
www.keithley.com

Reference Manual
707B-901-01 Rev. B / January 2015

*P707B90101B*
707B-901-01

A Tektr onix Company
A Greater  Measure of  Confidence

Models 707B and 708B Switching Matrix



 

 

Switching Matrix 

Reference Manual 
 
 
 
 
 
 
 
 

© 2015, Keithley Instruments 

Cleveland, Ohio, U.S.A. 

All rights reserved. 

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part, 
without the prior written approval of Keithley Instruments is strictly prohibited. 

TSPTM, TSP-LinkTM, and TSP-NetTM are trademarks of Keithley Instruments, Inc.  All Keithley 
Instruments product names are trademarks or registered trademarks of Keithley Instruments. Other 

brand names are trademarks or registered trademarks of their respective holders. 

The Lua 5.0 software and associated documentation files are copyright © 1994-2008, Tecgraf, 
PUC-Rio. Terms of license for the Lua software and associated documentation can be accessed at 

the Lua licensing site (http://www.lua.org/license.html). 

 

Document number: 707B-901-01 Rev. B / January 2015 

 

 

Models 707B and 708B 





 

 

 

 Safety precautions 
The following safety precautions should be observed before using this product and any associated instrumentation. Although 
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous 
conditions may be present. 

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions 
required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using 
the product. Refer to the user documentation for complete product specifications. 

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired. 
 

The types of product users are: 

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the 
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained. 

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the 
instrument. They must be protected from electric shock and contact with hazardous live circuits. 

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line 
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures 
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel. 

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained 
service personnel may perform installation and service procedures. 
 

Keithley Instruments products are designed for use with electrical signals that are measurement, control, and data I/O 
connections, with low transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high 
transient overvoltages. Measurement Category II (as referenced in IEC 60664) connections require protection for high transient 
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to 
mains. These instruments will be marked as category II or higher. 

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains. 

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test 
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any 
unknown circuit before measuring. 

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators 
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential 
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If 
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed. 
 

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited 
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective 
devices to limit fault current and voltage to the card. 

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the 
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use. 

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input 
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator. 

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under 
test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting 
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers. 
 

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) 
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the 
voltage being measured. 
 

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or 



 

 

accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be 
impaired. 

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating 
information, and as shown on the instrument or test fixture panels, or switching card. 

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard. 

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground) 
connections. 

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use 
of a lid interlock. 

If a  screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation. 

The  symbol on an instrument means caution, risk of danger. The user must refer to the operating instructions located in the 
user documentation in all cases where the symbol is marked on the instrument. 

The  symbol on an instrument means caution, risk of electric shock. Use standard safety precautions to avoid personal 
contact with these voltages. 

The   symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns. 

The  symbol indicates a connection terminal to the equipment frame. 

If this  symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be 
properly disposed of according to federal, state, and local laws. 

The WARNING heading in the user documentation explains dangers that might result in personal injury or death. Always read 
the associated information very carefully before performing the indicated procedure. 

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may 
invalidate the warranty. 

Instrumentation and accessories shall not be connected to humans. 

Before performing any maintenance, disconnect the line cord and all test cables. 

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power 
transformer, test leads, and input jacks — must be purchased from Keithley Instruments. Standard fuses with applicable national 
safety approvals may be used if the rating and type are the same. Other components that are not safety-related may be 
purchased from other suppliers as long as they are equivalent to the original component (note that selected parts should be 
purchased only through Keithley Instruments to maintain accuracy and functionality of the product). If you are unsure about the 
applicability of a replacement component, call a Keithley Instruments office for information. 

To clean an instrument, use a damp cloth or mild, water-based cleaner. Clean the exterior of the instrument only. Do not apply 
cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with 
no case or chassis (e.g., a data acquisition board for installation into a computer) should never require cleaning if handled 
according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the 
factory for proper cleaning/servicing. 

Safety precaution revision as of January 2013. 

 



 

 

 Introduction ............................................................................................................... 1-1 

Contact information .............................................................................................................. 1-1 

Overview .............................................................................................................................. 1-1 

Extended warranty ............................................................................................................... 1-1 

 General operation ..................................................................................................... 2-1 

Rear panel overview ............................................................................................................ 2-1 
Model 707B Rear panel ............................................................................................................ 2-2 
Model 708B Rear panel ............................................................................................................ 2-2 

Wiring ................................................................................................................................... 2-2 
Communication connections ..................................................................................................... 2-3 
Digital I/O port ........................................................................................................................... 2-7 

Power-up ............................................................................................................................ 2-10 
Line power connection ............................................................................................................ 2-10 
Power-up sequence ................................................................................................................ 2-10 

Front-panel operation ......................................................................................................... 2-11 
Model 707B front panel ........................................................................................................... 2-11 
Model 708B front panel ........................................................................................................... 2-11 
Display .................................................................................................................................... 2-12 
Crosspoint display (Model 707B only) ..................................................................................... 2-14 
Selecting channels from the front panel .................................................................................. 2-15 
Keys and navigation wheel...................................................................................................... 2-16 
Menu options ........................................................................................................................... 2-19 

Remote communications interfaces ................................................................................... 2-22 
USB communications .............................................................................................................. 2-23 
GPIB setup .............................................................................................................................. 2-30 
LAN communications .............................................................................................................. 2-35 
Supplied software .................................................................................................................... 2-56 
Keithley I/O layer ..................................................................................................................... 2-57 
Addressing instruments with VISA .......................................................................................... 2-61 

Using the web interface...................................................................................................... 2-66 
Introduction ............................................................................................................................. 2-66 
Card pages.............................................................................................................................. 2-68 
Scan Builder page ................................................................................................................... 2-71 
TSB Embedded ....................................................................................................................... 2-75 
Admin page ............................................................................................................................. 2-77 
Unit page ................................................................................................................................. 2-77 
LXI page .................................................................................................................................. 2-78 

Switch operation ................................................................................................................. 2-80 
Working with channels ............................................................................................................ 2-80 
Reset a channel ...................................................................................................................... 2-97 
Pseudocards ........................................................................................................................... 2-98 
Save the present configuration ................................................................................................ 2-98 

 Functions and features ............................................................................................ 3-1 

Scanning and triggering ....................................................................................................... 3-1 

Trigger model ....................................................................................................................... 3-1 

Table of Contents 



Table of Contents Models 707B and 708B Switching Matrix Reference Manual 
 

 

Trigger model components........................................................................................................ 3-3 
Trigger model events and associated commands ..................................................................... 3-3 

Scan and step counts........................................................................................................... 3-4 

Basic scan procedure ........................................................................................................... 3-5 
Changing attributes of an existing scan .................................................................................... 3-6 
Front-panel scanning ................................................................................................................ 3-6 
Foreground and background scan execution ............................................................................ 3-7 
Include multiple channels in a single scan step......................................................................... 3-7 

Remote interface scanning .................................................................................................. 3-8 
Scan and trigger commands ..................................................................................................... 3-8 
Scanning examples ................................................................................................................... 3-9 

Hardware trigger modes..................................................................................................... 3-13 
Falling edge trigger mode ....................................................................................................... 3-14 
Rising edge master trigger mode ............................................................................................ 3-15 
Rising edge acceptor trigger mode ......................................................................................... 3-15 
Either edge trigger mode ......................................................................................................... 3-16 

Understanding synchronous triggering modes .................................................................. 3-17 
Synchronous master trigger mode .......................................................................................... 3-17 
Synchronous acceptor trigger mode ....................................................................................... 3-19 
Synchronous trigger mode ...................................................................................................... 3-19 

Events ................................................................................................................................ 3-21 
Event blenders ........................................................................................................................ 3-21 

 Theory of operation .................................................................................................. 4-1 

Theory of operation .............................................................................................................. 4-1 
Models 707B and 708B theory of operations overview ............................................................. 4-1 
Mainframe ................................................................................................................................. 4-1 
Front panel ................................................................................................................................ 4-5 

 Introduction to TSP operation.................................................................................. 5-1 

Introduction to TSP operation .............................................................................................. 5-1 
Controlling the instrument by sending individual command messages ..................................... 5-1 
Queries ..................................................................................................................................... 5-3 
Data retrieval commands .......................................................................................................... 5-3 
Information on scripting and programming ................................................................................ 5-3 

About TSP commands ......................................................................................................... 5-3 
Beeper control ........................................................................................................................... 5-3 
Bit manipulation and logic operations ........................................................................................ 5-4 
channel functions and attributes................................................................................................ 5-4 
createconfigscript function......................................................................................................... 5-7 
Data queue................................................................................................................................ 5-7 
delay function ............................................................................................................................ 5-7 
Digital I/O .................................................................................................................................. 5-8 
Display ...................................................................................................................................... 5-8 
Error queue ............................................................................................................................... 5-8 
eventlog functions and attributes ............................................................................................... 5-9 
exit function ............................................................................................................................... 5-9 
Queries and response messages .............................................................................................. 5-9 
GPIB ......................................................................................................................................... 5-9 
LAN and LXI ............................................................................................................................ 5-10 
Local node............................................................................................................................... 5-11 
make accessor functions ......................................................................................................... 5-11 
memory functions .................................................................................................................... 5-11 



Models 707B and 708B Switching Matrix Reference Manual Table of Contents 
 

 

opc function ............................................................................................................................. 5-11 
print functions .......................................................................................................................... 5-11 
Reset ....................................................................................................................................... 5-11 
Scan ........................................................................................................................................ 5-12 
Scripting .................................................................................................................................. 5-12 
Slot .......................................................................................................................................... 5-13 
Status model functions ............................................................................................................ 5-13 
timer functions ......................................................................................................................... 5-13 
trigger functions and attributes ................................................................................................ 5-14 
TSP-Link ................................................................................................................................. 5-14 
TSP-Net .................................................................................................................................. 5-15 
Userstrings .............................................................................................................................. 5-15 
waitcomplete function .............................................................................................................. 5-15 

Overview of instrument drivers .......................................................................................... 5-16 
Instrument driver types ............................................................................................................ 5-16 
VXIPnP drivers ........................................................................................................................ 5-17 
Interchangeable Virtual Instruments (IVI) style drivers ............................................................ 5-17 
LabVIEW drivers ..................................................................................................................... 5-18 
Getting instrument drivers ....................................................................................................... 5-18 
Instrument driver examples ..................................................................................................... 5-18 

Migrating from Models 707A and 708A.............................................................................. 5-19 
Migrating Model 707A or 708A programs to Model 707B or 708B .......................................... 5-19 
DDC to ICL command equivalencies ...................................................................................... 5-20 

 Instrument programming ......................................................................................... 6-1 

Fundamentals of scripting for TSP ....................................................................................... 6-1 
Fundamentals of scripting for TSP ............................................................................................ 6-1 

Fundamentals of programming for TSP ............................................................................. 6-10 
Introduction ............................................................................................................................. 6-10 
What is Lua? ........................................................................................................................... 6-11 
Lua basics ............................................................................................................................... 6-11 
Standard libraries .................................................................................................................... 6-25 
Programming example: Script with a for loop .......................................................................... 6-29 

Using Test Script Builder (TSB) ......................................................................................... 6-31 
Installing the TSB software...................................................................................................... 6-32 
Project navigator ..................................................................................................................... 6-33 
Script editor ............................................................................................................................. 6-33 
Programming interaction ......................................................................................................... 6-33 

Advanced scripting for TSP ............................................................................................... 6-33 
Global variables and the script.user.scripts table .................................................................... 6-33 
Create a script using the script.new() command ..................................................................... 6-35 
Rename a script ...................................................................................................................... 6-37 
Retrieve a user script .............................................................................................................. 6-39 
Delete user scripts from the instrument ................................................................................... 6-41 
Restore a script to the run-time environment .......................................................................... 6-42 
Memory considerations for the run-time environment ............................................................. 6-42 

TSP-Link system and running simultaneous test scripts ................................................... 6-44 
TSP-Link system ..................................................................................................................... 6-44 
TSP-Link nodes ....................................................................................................................... 6-44 
Connect the TSP-Link cable.................................................................................................... 6-44 
Initialization ............................................................................................................................. 6-46 
Using TSP to run test scripts simultaneously .......................................................................... 6-48 

TSP-Net ............................................................................................................................. 6-52 
Overview ................................................................................................................................. 6-52 
TSP-Net Capabilities ............................................................................................................... 6-52 



Table of Contents Models 707B and 708B Switching Matrix Reference Manual 
 

 

Using TSP-Net with any Ethernet-enabled device .................................................................. 6-53 
TSP-Net compared to TSP-Link to communicate with TSP-enabled devices ......................... 6-54 
TSP-Net instrument commands: General device control ........................................................ 6-54 
TSP-Net instrument commands: TSP-enabled device control ................................................ 6-54 
Example: Using tspnet commands .......................................................................................... 6-55 

 TSP command reference .......................................................................................... 7-1 

Command programming notes ............................................................................................ 7-1 
Placeholder text ........................................................................................................................ 7-1 
Syntax rules .............................................................................................................................. 7-2 
Logical instruments ................................................................................................................... 7-3 
Time and date values ................................................................................................................ 7-3 

Using the TSP command reference ..................................................................................... 7-4 
Command name and standard parameters summary ............................................................... 7-4 
Command usage ....................................................................................................................... 7-5 
Command details ...................................................................................................................... 7-6 
Example section ........................................................................................................................ 7-6 
Related commands and information .......................................................................................... 7-7 

Instrument Control Library (ICL) command reference ......................................................... 7-8 
beeper.beep() ............................................................................................................................ 7-8 
beeper.enable ........................................................................................................................... 7-8 
bit.bitand() ................................................................................................................................. 7-9 
bit.bitor() .................................................................................................................................... 7-9 
bit.bitxor() ................................................................................................................................ 7-10 
bit.clear() ................................................................................................................................. 7-11 
bit.get() .................................................................................................................................... 7-11 
bit.getfield() ............................................................................................................................. 7-12 
bit.set() .................................................................................................................................... 7-13 
bit.setfield().............................................................................................................................. 7-14 
bit.test() ................................................................................................................................... 7-14 
bit.toggle() ............................................................................................................................... 7-15 
channel.clearforbidden() ......................................................................................................... 7-16 
channel.close() ........................................................................................................................ 7-17 
channel.connectrule ................................................................................................................ 7-18 
channel.connectsequential ...................................................................................................... 7-19 
channel.createspecifier() ......................................................................................................... 7-20 
channel.exclusiveclose() ......................................................................................................... 7-22 
channel.exclusiveslotclose().................................................................................................... 7-23 
channel.getclose() ................................................................................................................... 7-24 
channel.getcount() .................................................................................................................. 7-25 
channel.getdelay() ................................................................................................................... 7-26 
channel.getforbidden() ............................................................................................................ 7-27 
channel.getlabel() .................................................................................................................... 7-28 
channel.getlabelcolumn() ........................................................................................................ 7-30 
channel.getlabelrow() .............................................................................................................. 7-31 
channel.getstate() ................................................................................................................... 7-32 
channel.gettype() .................................................................................................................... 7-33 
channel.open() ........................................................................................................................ 7-33 
channel.pattern.catalog() ........................................................................................................ 7-35 
channel.pattern.delete() .......................................................................................................... 7-36 
channel.pattern.getimage() ..................................................................................................... 7-36 
channel.pattern.setimage()...................................................................................................... 7-37 
channel.pattern.snapshot()...................................................................................................... 7-39 
channel.reset() ........................................................................................................................ 7-40 
channel.setdelay() ................................................................................................................... 7-41 
channel.setforbidden() ............................................................................................................ 7-42 
channel.setlabel() .................................................................................................................... 7-43 
channel.setlabelcolumn() ........................................................................................................ 7-44 



Models 707B and 708B Switching Matrix Reference Manual Table of Contents 
 

 

channel.setlabelrow() .............................................................................................................. 7-46 
createconfigscript() .................................................................................................................. 7-47 
dataqueue.add() ...................................................................................................................... 7-48 
dataqueue.CAPACITY ............................................................................................................ 7-49 
dataqueue.clear() .................................................................................................................... 7-49 
dataqueue.count ..................................................................................................................... 7-50 
dataqueue.next() ..................................................................................................................... 7-51 
delay() ..................................................................................................................................... 7-52 
digio.readbit() .......................................................................................................................... 7-52 
digio.readport() ........................................................................................................................ 7-53 
digio.trigger[N].assert() ............................................................................................................ 7-53 
digio.trigger[N].clear() .............................................................................................................. 7-54 
digio.trigger[N].EVENT_ID ...................................................................................................... 7-54 
digio.trigger[N].mode ............................................................................................................... 7-55 
digio.trigger[N].overrun ............................................................................................................ 7-57 
digio.trigger[N].pulsewidth ....................................................................................................... 7-57 
digio.trigger[N].release() .......................................................................................................... 7-58 
digio.trigger[N].reset() ............................................................................................................. 7-58 
digio.trigger[N].stimulus ........................................................................................................... 7-59 
digio.trigger[N].wait() ............................................................................................................... 7-61 
digio.writebit() .......................................................................................................................... 7-61 
digio.writeport() ....................................................................................................................... 7-62 
digio.writeprotect ..................................................................................................................... 7-63 
display.clear() .......................................................................................................................... 7-63 
display.getannunciators() ........................................................................................................ 7-64 
display.getcursor() ................................................................................................................... 7-65 
display.getlastkey() ................................................................................................................. 7-66 
display.gettext() ....................................................................................................................... 7-67 
display.inputvalue() ................................................................................................................. 7-68 
display.loadmenu.add() ........................................................................................................... 7-70 
display.loadmenu.catalog() ..................................................................................................... 7-71 
display.loadmenu.delete() ....................................................................................................... 7-72 
display.locallockout ................................................................................................................. 7-72 
display.menu() ......................................................................................................................... 7-73 
display.prompt() ...................................................................................................................... 7-74 
display.screen ......................................................................................................................... 7-75 
display.sendkey() .................................................................................................................... 7-76 
display.setcursor() ................................................................................................................... 7-77 
display.settext() ....................................................................................................................... 7-79 
display.trigger.clear() ............................................................................................................... 7-80 
display.trigger.EVENT_ID ....................................................................................................... 7-80 
display.waitkey() ...................................................................................................................... 7-81 
errorqueue.clear() ................................................................................................................... 7-82 
errorqueue.count ..................................................................................................................... 7-83 
errorqueue.next() .................................................................................................................... 7-83 
eventlog.all() ............................................................................................................................ 7-84 
eventlog.clear() ....................................................................................................................... 7-85 
eventlog.count ......................................................................................................................... 7-86 
eventlog.enable ....................................................................................................................... 7-86 
eventlog.next() ........................................................................................................................ 7-87 
eventlog.overwritemethod ....................................................................................................... 7-88 
exit() ........................................................................................................................................ 7-88 
format.asciiprecision ............................................................................................................... 7-89 
format.byteorder ...................................................................................................................... 7-89 
format.data .............................................................................................................................. 7-90 
gettimezone() .......................................................................................................................... 7-92 
gpib.address ............................................................................................................................ 7-92 
lan.applysettings() ................................................................................................................... 7-93 
lan.config.dns.address[N] ........................................................................................................ 7-94 
lan.config.dns.domain ............................................................................................................. 7-95 
lan.config.dns.dynamic ............................................................................................................ 7-95 



Table of Contents Models 707B and 708B Switching Matrix Reference Manual 
 

 

lan.config.dns.hostname ......................................................................................................... 7-96 
lan.config.dns.verify ................................................................................................................ 7-97 
lan.config.gateway .................................................................................................................. 7-97 
lan.config.ipaddress ................................................................................................................ 7-98 
lan.config.method .................................................................................................................... 7-98 
lan.config.subnetmask ............................................................................................................ 7-99 
lan.lxidomain ......................................................................................................................... 7-100 
lan.nagle................................................................................................................................ 7-100 
lan.reset() .............................................................................................................................. 7-101 
lan.restoredefaults() .............................................................................................................. 7-101 
lan.status.dns.address[N] ...................................................................................................... 7-102 
lan.status.dns.name .............................................................................................................. 7-102 
lan.status.duplex ................................................................................................................... 7-103 
lan.status.gateway ................................................................................................................ 7-103 
lan.status.ipaddress .............................................................................................................. 7-104 
lan.status.macaddress .......................................................................................................... 7-104 
lan.status.port.dst .................................................................................................................. 7-105 
lan.status.port.rawsocket ...................................................................................................... 7-105 
lan.status.port.telnet .............................................................................................................. 7-106 
lan.status.port.vxi11 .............................................................................................................. 7-106 
lan.status.speed .................................................................................................................... 7-107 
lan.status.subnetmask .......................................................................................................... 7-107 
lan.trigger[N].assert() ............................................................................................................ 7-108 
lan.trigger[N].clear() .............................................................................................................. 7-108 
lan.trigger[N].connect() .......................................................................................................... 7-109 
lan.trigger[N].connected ........................................................................................................ 7-109 
lan.trigger[N].disconnect() ..................................................................................................... 7-110 
lan.trigger[N].EVENT_ID ....................................................................................................... 7-111 
lan.trigger[N].ipaddress ......................................................................................................... 7-111 
lan.trigger[N].mode ................................................................................................................ 7-112 
lan.trigger[N].overrun ............................................................................................................ 7-113 
lan.trigger[N].protocol ............................................................................................................ 7-114 
lan.trigger[N].pseudostate ..................................................................................................... 7-114 
lan.trigger[N].stimulus ........................................................................................................... 7-115 
lan.trigger[N].wait() ................................................................................................................ 7-117 
localnode.define.* .................................................................................................................. 7-118 
localnode.description ............................................................................................................ 7-119 
node[N].execute() .................................................................................................................. 7-120 
node[N].getglobal() ................................................................................................................ 7-120 
localnode.model .................................................................................................................... 7-121 
localnode.password .............................................................................................................. 7-121 
localnode.passwordmode ..................................................................................................... 7-122 
localnode.prompts ................................................................................................................. 7-123 
localnode.prompts4882 ......................................................................................................... 7-124 
localnode.reset() ................................................................................................................... 7-124 
localnode.revision ................................................................................................................. 7-125 
localnode.serialno ................................................................................................................. 7-126 
node[N].setglobal() ................................................................................................................ 7-126 
localnode.showerrors ............................................................................................................ 7-127 
makegetter() .......................................................................................................................... 7-127 
makesetter() .......................................................................................................................... 7-128 
memory.available() ................................................................................................................ 7-129 
memory.used() ...................................................................................................................... 7-130 
opc() ...................................................................................................................................... 7-131 
print() ..................................................................................................................................... 7-131 
printbuffer()............................................................................................................................ 7-132 
printnumber() ......................................................................................................................... 7-134 
reset() .................................................................................................................................... 7-135 
scan.abort() ........................................................................................................................... 7-135 
scan.add() ............................................................................................................................. 7-136 
scan.addimagestep() ............................................................................................................. 7-138 



Models 707B and 708B Switching Matrix Reference Manual Table of Contents 
 

 

scan.background() ................................................................................................................ 7-139 
scan.bypass .......................................................................................................................... 7-140 
scan.create() ......................................................................................................................... 7-141 
scan.execute() ....................................................................................................................... 7-142 
scan.list() ............................................................................................................................... 7-143 
scan.mode............................................................................................................................. 7-145 
scan.reset() ........................................................................................................................... 7-146 
scan.scancount ..................................................................................................................... 7-147 
scan.state() ........................................................................................................................... 7-148 
scan.stepcount ...................................................................................................................... 7-149 
scan.trigger.arm.clear() ......................................................................................................... 7-149 
scan.trigger.arm.set() ............................................................................................................ 7-150 
scan.trigger.arm.stimulus ...................................................................................................... 7-150 
scan.trigger.channel.clear() ................................................................................................... 7-152 
scan.trigger.channel.set() ...................................................................................................... 7-152 
scan.trigger.channel.stimulus ................................................................................................ 7-153 
scan.trigger.clear() ................................................................................................................ 7-155 
script.anonymous .................................................................................................................. 7-155 
script.delete() ........................................................................................................................ 7-156 
script.new()............................................................................................................................ 7-156 
script.newautorun() ............................................................................................................... 7-158 
script.restore() ....................................................................................................................... 7-159 
script.run() ............................................................................................................................. 7-159 
script.user.catalog() ............................................................................................................... 7-160 
scriptVar.autorun ................................................................................................................... 7-160 
scriptVar.list() ........................................................................................................................ 7-162 
scriptVar.name ...................................................................................................................... 7-162 
scriptVar.run() ....................................................................................................................... 7-163 
scriptVar.save() ..................................................................................................................... 7-164 
scriptVar.source .................................................................................................................... 7-165 
settime() ................................................................................................................................ 7-165 
settimezone() ........................................................................................................................ 7-166 
slot[X].idn .............................................................................................................................. 7-168 
slot[X].poles.four ................................................................................................................... 7-169 
slot[X].poles.one .................................................................................................................... 7-170 
slot[X].poles.two .................................................................................................................... 7-171 
slot[X].pseudocard ................................................................................................................ 7-171 
status.condition ..................................................................................................................... 7-172 
status.node_enable ............................................................................................................... 7-174 
status.node_event ................................................................................................................. 7-176 
status.operation.* .................................................................................................................. 7-177 
status.operation.user.* .......................................................................................................... 7-179 
status.questionable.* ............................................................................................................. 7-181 
status.request_enable ........................................................................................................... 7-183 
status.request_event ............................................................................................................. 7-185 
status.reset() ......................................................................................................................... 7-187 
status.standard.* ................................................................................................................... 7-187 
status.system.* ...................................................................................................................... 7-190 
status.system2.* .................................................................................................................... 7-192 
status.system3.* .................................................................................................................... 7-194 
status.system4.* .................................................................................................................... 7-196 
status.system5.* .................................................................................................................... 7-198 
timer.measure.t() ................................................................................................................... 7-200 
timer.reset() ........................................................................................................................... 7-200 
trigger.blender[N].clear() ....................................................................................................... 7-201 
trigger.blender[N].EVENT_ID ................................................................................................ 7-201 
trigger.blender[N].orenable.................................................................................................... 7-202 
trigger.blender[N].overrun ..................................................................................................... 7-203 
trigger.blender[N].reset() ....................................................................................................... 7-203 
trigger.blender[N].stimulus[M] ............................................................................................... 7-204 
trigger.blender[N].wait() ......................................................................................................... 7-205 



Table of Contents Models 707B and 708B Switching Matrix Reference Manual 
 

 

trigger.clear() ......................................................................................................................... 7-206 
trigger.EVENT_ID ................................................................................................................. 7-206 
trigger.timer[N].clear() ........................................................................................................... 7-206 
trigger.timer[N].count ............................................................................................................. 7-207 
trigger.timer[N].delay ............................................................................................................. 7-208 
trigger.timer[N].delaylist ........................................................................................................ 7-208 
trigger.timer[N].EVENT_ID .................................................................................................... 7-209 
trigger.timer[N].overrun ......................................................................................................... 7-210 
trigger.timer[N].passthrough .................................................................................................. 7-210 
trigger.timer[N].reset() ........................................................................................................... 7-211 
trigger.timer[N].stimulus ........................................................................................................ 7-212 
trigger.timer[N].wait() ............................................................................................................. 7-213 
trigger.wait() .......................................................................................................................... 7-213 
tsplink.group .......................................................................................................................... 7-214 
tsplink.master ........................................................................................................................ 7-215 
tsplink.node ........................................................................................................................... 7-215 
tsplink.readbit() ...................................................................................................................... 7-216 
tsplink.readport() ................................................................................................................... 7-216 
tsplink.reset() ......................................................................................................................... 7-217 
tsplink.state ........................................................................................................................... 7-218 
tsplink.trigger[N].assert() ....................................................................................................... 7-219 
tsplink.trigger[N].clear() ......................................................................................................... 7-219 
tsplink.trigger[N].EVENT_ID .................................................................................................. 7-220 
tsplink.trigger[N].mode .......................................................................................................... 7-220 
tsplink.trigger[N].overrun ....................................................................................................... 7-222 
tsplink.trigger[N].pulsewidth .................................................................................................. 7-223 
tsplink.trigger[N].release() ..................................................................................................... 7-223 
tsplink.trigger[N].reset() ......................................................................................................... 7-224 
tsplink.trigger[N].stimulus ...................................................................................................... 7-224 
tsplink.trigger[N].wait() .......................................................................................................... 7-225 
tsplink.writebit() ..................................................................................................................... 7-226 
tsplink.writeport() ................................................................................................................... 7-227 
tsplink.writeprotect ................................................................................................................ 7-227 
tspnet.clear() ......................................................................................................................... 7-228 
tspnet.connect() .................................................................................................................... 7-229 
tspnet.disconnect() ................................................................................................................ 7-230 
tspnet.execute() .................................................................................................................... 7-231 
tspnet.idn() ............................................................................................................................ 7-232 
tspnet.read() .......................................................................................................................... 7-232 
tspnet.readavailable() ............................................................................................................ 7-233 
tspnet.reset() ......................................................................................................................... 7-234 
tspnet.termination() ............................................................................................................... 7-234 
tspnet.timeout ........................................................................................................................ 7-235 
tspnet.tsp.abort() ................................................................................................................... 7-236 
tspnet.tsp.abortonconnect ..................................................................................................... 7-236 
tspnet.tsp.rbtablecopy() ......................................................................................................... 7-237 
tspnet.tsp.runscript() ............................................................................................................. 7-238 
tspnet.write() ......................................................................................................................... 7-239 
userstring.add() ..................................................................................................................... 7-239 
userstring.catalog() ............................................................................................................... 7-240 
userstring.delete() ................................................................................................................. 7-241 
userstring.get() ...................................................................................................................... 7-242 
waitcomplete() ....................................................................................................................... 7-242 

 Troubleshooting guide ............................................................................................. 8-1 

Troubleshooting guide.......................................................................................................... 8-1 

Error and status messages .................................................................................................. 8-1 
Error summary .......................................................................................................................... 8-1 
Effects of errors on scripts......................................................................................................... 8-2 



Models 707B and 708B Switching Matrix Reference Manual Table of Contents 
 

 

Retrieving errors ........................................................................................................................ 8-2 
USB troubleshooting ............................................................................................................ 8-2 

Check driver for the USB Test and Measurement Device ......................................................... 8-2 
Troubleshooting GPIB interfaces ......................................................................................... 8-5 

Controller (hardware) not recognized ........................................................................................ 8-5 
Timeout errors ........................................................................................................................... 8-5 

Troubleshooting LAN interfaces ........................................................................................... 8-5 
Verify connections and settings................................................................................................. 8-6 
Use Ping to test the connection................................................................................................. 8-6 
Open ports on firewalls ............................................................................................................. 8-7 
Web page problems .................................................................................................................. 8-7 
LXI LAN status indicator ............................................................................................................ 8-8 
Initialize the LAN configuration .................................................................................................. 8-8 
Install LXI Discovery Browser software on your computer ........................................................ 8-8 
Communicate using VISA communicator .................................................................................. 8-9 
WireShark ................................................................................................................................. 8-9 

Testing the display, keys, and channel matrix ..................................................................... 8-9 
Verify front panel key operation ................................................................................................. 8-9 
Verify display operation ............................................................................................................. 8-9 
Verify crosspoint display operation (707B only) ...................................................................... 8-10 

Update drivers .................................................................................................................... 8-10 

Contacting support ............................................................................................................. 8-10 

 Frequently asked questions ..................................................................................... 9-1 

Frequently asked questions ................................................................................................. 9-1 
How do I get my LAN or web connection to work? .................................................................... 9-1 
Why can't I close a channel? ..................................................................................................... 9-1 
How do I know if an error has occurred on my instrument? ...................................................... 9-2 
How do I find the serial number and firmware version of the instrument? ................................. 9-3 

 Next steps ............................................................................................................... 10-1 

Additional Models 707B and 708B information .................................................................. 10-1 

 Maintenance .............................................................................................................. A-1 

Maintenance ......................................................................................................................... A-1 
Upgrading firmware ................................................................................................................... A-1 
Check fan status ....................................................................................................................... A-2 
Fuse replacement ..................................................................................................................... A-2 
Fixed rack installation ................................................................................................................ A-4 

 Using Models 707A and 708A compatibility mode ................................................. B-1 

Using Models 707A and 708A compatibility mode .............................................................. B-1 
Model A to Model B differences ................................................................................................ B-1 
Models 707A and 708A commands .......................................................................................... B-3 

 Status model ............................................................................................................. C-1 

Status model ........................................................................................................................ C-1 
Overview ................................................................................................................................... C-1 
Status model diagrams ............................................................................................................. C-3 



Table of Contents Models 707B and 708B Switching Matrix Reference Manual 
 

 

Status function summary ......................................................................................................... C-13 
Clearing registers .................................................................................................................... C-13 
Startup state ............................................................................................................................ C-14 
Programming and reading registers ........................................................................................ C-14 
Status byte and service request (SRQ) ................................................................................... C-16 
TSP-Link system status .......................................................................................................... C-21 

 Index ........................................................................................................................... I-1 

  



 

 

In this section: 

Contact information .................................................................. 1-1 
Overview .................................................................................. 1-1 
Extended warranty ................................................................... 1-1 

 
 

Contact information 
If you have any questions after you review the information in this documentation, please contact your 
local Keithley Instruments office, sales partner, or distributor, or call Keithley Instruments corporate 
headquarters (toll-free inside the U.S. and Canada only) at 1-800-935-5595, or from outside the U.S. 
at +1-440-248-0400. For worldwide contact numbers, visit the Keithley Instruments website 
(http://www.keithley.com). 

 

Overview 
The Models 707B and 708B provide outstanding low-current matrix capability and let you control up 
to 576 matrix crosspoints in real time. Their large matrix format makes them well suited for your large 
ATE system applications, such as semiconductor device characterization, wafer level reliability, 
parallel test, and modeling. 

The Model 707B can host up to six test cards. The Model 708B is a single slot chassis. 
 

Extended warranty 
Additional years of warranty coverage are available on many products. These valuable contracts 
protect you from unbudgeted service expenses and provide additional years of protection at a fraction 
of the price of a repair. Extended warranties are available on new and existing products. Contact your 
local Keithley Instruments office, sales partner, or distributor for details. 

 

Section 1 

Introduction 

http://www.keithley.com/




 

 

In this section: 

Rear panel overview ................................................................ 2-1 
Wiring ....................................................................................... 2-2 
Power-up ................................................................................ 2-10 
Front-panel operation ............................................................. 2-11 
Remote communications interfaces ....................................... 2-22 
Using the web interface .......................................................... 2-66 
Switch operation ..................................................................... 2-80 

 
 

Rear panel overview 
You make power and communications connections to the rear panel of the instrument. The 
connections available are described in the following table. The following figures show the locations of 
the connections. 

 

Rear panel options  

Option Description 

Slots Use the slots in the Keithley Instruments Models 707B and 708B for the switching 
cards. The Model 707B can accept up to six switching cards. The Model 708B can 
accept one switching card. 
If a slot does not contain a card, make sure to cover the slot with a slot cover. For 
model and firmware version information on the installed cards, press the SLOT key. 

IEEE-488 IEEE-488 (GPIB) connector. See GPIB quick start (on page 2-31). 
Digital I/O Digital input/output connector. See Digital I/O port (on page 2-7) for connection 

information. 
LAN Ethernet (LAN) connector. See Connect the LAN cable (on page 2-4). 
Fuse Line fuse. Model 707B fuse rating is Slow Blow 2.0A, 250V. Model 708B is Slow 

Blow 1.0 A 250V. To replace the fuse, see Fuse replacement (on page A-2). 
USB (Type B) USB communication interface connection. See Connect the USB cable (on page 2-

3). 
Power Using the supplied line cord, connect to a grounded AC power outlet. See Line 

power connection (on page 2-10) for connection details. 
TSP-LINK Use with TSP-Link® cable to expand the system. See Connect the TSP-Link cable 

(on page 2-6). 
Serial number Serial number of the instrument. 

 

Section 2 

General operation 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-2 707B-901-01 Rev. B / January 2015 

 

Model 707B Rear panel 
Figure 1: Model 707B rear panel 

 
 

Model 708B Rear panel 
Figure 2: Model 708B full rear panel 

 
 

Wiring 
This section describes communication, digital I/O, and power connections. 

Note that all signal wiring to devices and instruments is done through the switch cards. Please refer to 
the switch card manuals for additional information. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-3 

 

Communication connections 
The following topics describe how to connect the cable connections for the communication interfaces. 

To properly set up the communications interfaces after connection, see the information in Remote 
communications interfaces (on page 4-4). 

 
 

Connect the USB cable 
To connect the USB cable: 

Connect the Type B end of the USB cable to the connector on the back of the instrument (shown 
below). 

 

Figure 3: Model 707B rear panel USB connection 

 
 

Figure 4: Model 708B rear panel USB connection 

 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-4 707B-901-01 Rev. B / January 2015 

 

Connect the LAN cable 
Connect the LAN connector between the rear panel of the instrument and the host computer or 
network router. You can use an LAN crossover cable (RJ-45, male/male) or straight-through cable. 
The instrument automatically senses which cable you have connected. 

The location of the LAN connector on the instrument is shown below. 
 

The TSP-Link connectors will accept a LAN connection, but will not be identified as a LAN and will 
not connect properly. Be sure to connect the LAN connector correctly. 

 

Figure 5: Model 707B rear panel LAN connection 

 
 

z 
 

Connect the GPIB cable 
To connect an instrument to the GPIB bus, use a cable equipped with standard IEEE-488 connectors, 
as shown below. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-5 

 

Figure 6: GPIB connector 

 
 

To allow many parallel connections to one instrument, stack the connectors. Each connector has two 
screws to ensure that connections remain secure. The figure below shows a typical connection 
diagram for a test system with multiple instruments. 

 

Figure 7: IEEE-488 connections 

 
 

To avoid possible mechanical damage, stack no more than three connectors on any one instrument. 
To minimize interference caused by electromagnetic radiation, use only shielded IEEE-488 cables. 
Contact Keithley Instruments for shielded cables. 

 

To connect the instrument to the IEEE-488 bus, line up the cable connector with the connector on the 
rear panel. Install and tighten the screws securely, making sure not to overtighten them. The following 
figure shows the location of the connector. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-6 707B-901-01 Rev. B / January 2015 

 

Figure 8: Model 707B rear panel IEEE-488 connection 

 

Connect any additional connectors from other instruments as required for your application. Make sure 
the other end of the cable is properly connected to the controller. You can only have 15 devices 
connected to an IEEE-488 bus, including the controller. The maximum cable length is either two 
meters (6.5 feet) multiplied by the number of devices or 20 meters (65.6 feet), whichever is less. 
Erratic bus operation may occur if you ignore these limits. 

 

 
 

Connect the TSP-Link cable 
Connect the TSP-Link connector to one of the TSP-Link connectors on the rear panel of the 
instrument. 

The location of the TSP-Link connectors on the instrument are shown below. 
 

For an example of setting up a TSP-Linked system, see "Working with a Series 2600A" in the 
Models 707B and 708B User's Manual. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-7 

 

Figure 9: Model 708B rear panel TSP-Link connection 

 
 

Figure 10: Model 707B rear panel TSP-Link connection 

 
 

Digital I/O port 
The Models 707B and 708B have a digital input/output port that can be used to control external digital 
circuitry. For example, a handler that is used to perform binning operations can be used with a digital 
I/O port. The digital I/O port is a standard female DB-25 connector. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-8 707B-901-01 Rev. B / January 2015 

 

Figure 11: Models 707B and 708B digital I/O ports 

 
 

 
 

 Pin Description 
 1 

... 
14 

Digital I/O #1 
... 
Digital I/O #14 

 15-21 Ground 
 22 +5V D (fused, 600 mA) 
 23 Not connected; pin reserved for future use 
 24 Not connected; pin reserved for future use 
 25 +5V D (fused, 600 mA) 

 
 

If you were using a Model 707A or 708A, see Using Models 707A and 708A compatibility mode (on 
page B-1). 

 

Connecting cables 
Use a cable equipped with a standard male DB-25 connector (Keithley Instruments part number 
CA-126-1). 

 

Digital I/O lines (pins 1 through 14) 
The port provides 14 digital I/O lines. Each output is set high (+5 V) or low (0 V) and can read high or 
low logic levels. 

 

+5 V output 
The digital I/O port provides a +5 VDC output that is used to drive external logic circuitry. Maximum 
combined current output for all lines is 250 mA. These lines are protected by a self-resetting fuse with 
an hour recovery time. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-9 

 

Controlling digital I/O lines 
Although the digital I/O lines are primarily intended for use with a device handler for limit testing, they 
can also be used for other purposes such as controlling external logic circuits. You can control lines 
either from the front panel or over a remote interface. 
To set digital I/O values from the front panel: 
1. Press the MENU key, select DIGOUT, and then press the ENTER key or press the navigation 

wheel . 
2. Select DIG-IO-OUTPUT, and then press the ENTER key or the navigation wheel . 
3. Set the decimal value as required to set digital I/O lines in the range of 0 to 16,383 (see the table 

in Digital I/O bit weighting (on page 2-9)), and then press the ENTER key or the navigation wheel 
.  

For example, to set digital I/O lines 3 and 8, set the value to 132. 
4. Press the EXIT (LOCAL) key as needed to return to the main menu. 

 

To write-protect specific digital I/O lines to prevent their values from being changed: 
1. Press the MENU key, then select DIGIO, and then press the ENTER key or the navigation wheel 

. 
2. Select WRITE-PROTECT, and then press the ENTER key or the navigation wheel . 
3. Set the decimal value as required to write-protect digital I/O lines within the range of 0 to 16,383 

(see Digital I/O bit weighting (on page 2-9)), and then press the ENTER key or the navigation 
wheel . 
For example, to write-protect digital I/O lines 4 and 10, set the value to 520. 

4. Press the EXIT (LOCAL) key as needed to return to the main menu. 

To remove write protection, reset the decimal value to include only the lines that you want to write 
protect. To remove write protection from all lines, set the value to 0. 

 

Digital I/O bit weighting 
Bit weighting for the digital I/O lines is shown in the following table. 

Digital bit weight 

Line # Bit Decimal weighting Hexadecimal weighting 
1 B1 1 0x0001 

2 B2 2 0x0002 

3 B3 4 0x0004 
4 B4 8 0x0008 
5 B5 16 0x0010 
6 B6 32 0x0020 
7 B7 64 0x0040 
8 B8 128 0x0080 
9 B9 256 0x0100 
10 B10 512 0x0200 
11 B11 1,024 0x0400 
12 B12 2,048 0x0800 
13 B13 4,096 0x1000 
14 B14 8,192 0x2000 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-10 707B-901-01 Rev. B / January 2015 

 

Power-up 

Line power connection 
Follow the procedure below to connect the Model 707B or 708B to line power and turn on the 
instrument. 

The Model 707B or 708B operates from a line voltage of 100 V to 240 V at a frequency of 50 Hz or 60 
Hz. Line voltage is automatically sensed (there are no switches to set). Make sure the operating 
voltage in your area is compatible. 

 

The power cord supplied with the Model 707B or 708B contains a separate protective earth 
(safety ground) wire for use with grounded outlets. When proper connections are made, the 
instrument chassis is connected to power-line ground through the ground wire in the power 
cord. In addition, a redundant protective earth connection is provided through a screw on 
the rear panel. This terminal should be connected to a known protective earth. In the event 
of a failure, not using a properly grounded protective earth and grounded outlet may result 
in personal injury or death due to electric shock. 

Do not replace detachable MAINS supply cords with inadequately rated cords. Failure to 
use properly rated cords may result in personal injury or death due to electric shock. 

 

Operating the instrument on an incorrect line voltage may cause damage to the instrument, possibly 
voiding the warranty. 

 

To connect the Model 707B or 708B to line power and turn on the instrument: 
1. Make sure that the front panel power switch is in the off (0) position. See Front-panel operation 

(on page 2-11) for switch location. 
2. Connect the female end of the supplied power cord to the power connection (AC receptacle) on 

the rear panel. See Rear panel overview (on page 2-1) for connector location. 
3. Connect the other end of the power cord to a grounded AC outlet. 
4. Turn on the instrument by pressing the front panel power switch to the on (I) position. 

 

Power-up sequence 
When the instrument is turned on, the instrument performs self-tests and momentarily lights all 
segments and indicators on the display. If a failure is detected, the instrument momentarily displays 
an error message. Error messages are listed in Error and status messages (on page 8-1). 

If there are no errors, three dots are briefly displayed. On the Model 707B, the crosspoint display 
shows the text "Wait for Init to End." When initialization is complete, the bottom display shows 
"KEITHLEY Model 707B." The Model 708B displays "KEITHLEY Model 708B." 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-11 

 

Front-panel operation 
The front panel of the Keithley Instruments Model 707B or 708B contains the following items: 

• The display 
• The crosspoint display (Model 707B only) 
• The keys and navigation wheel  
• The LAN status indicator 
• The POWER button 

You can use the keys, displays, and the navigation wheel  to change the selected channel or 
channel pattern. You can also use them to access, view, and edit the menu items. The crosspoint 
display on the Model 707B shows you which channels are opened and closed. 

 

Model 707B front panel 
The front panel of the Model 707B is shown below. 

Figure 12: Model 707B front panel 

 
 

Model 708B front panel 
The front panel of the Model 708B is shown below. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-12 707B-901-01 Rev. B / January 2015 

 

Figure 13: Model 708B front panel 

 
 

Display 

This section describes the front-panel display of the Model 708B and the bottom display of the Model 
707B. 

 

During operation, the display provides information about the selected channel, channel pattern, 
channel state, and errors. You can press DISPLAY to cycle between the display of the channel or 
pattern, the closed channel list, or a screen message. 

During setup, the display shows menu choices that you can use to configure the instrument. 
 

Display during operation 
During operation, the display shows the control status (local or remote) and the current hannel, and 
indicates if any channels are closed. An example is shown below. 

If REM is not displayed, control is through the front panel. 

Figure 14: Display during operation 

 

 

The control status is shown in the upper left corner of the display. If REM is displayed, the instrument 
is being controlled remotely (through GPIB, LAN, or USB).  

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-13 

 

If you are connecting to the instrument through GPIB, you may also see the following indicators: 

• TALK: Instrument is addressed to talk 
• LSTN: Instrument is addressed to listen 
• SRQ: Service request 
• REM: Remote communication 

 

By default, the top line of the display shows the slot, row, and column of the selected channel. If 
labels have been set up for your instrument, you might see four-character labels for your channels, 
such as GATE+SMU1. See Set up labels (on page 2-91) for information on setting up labels. 

 
 

To change the selected channel: 
1. Press the navigation wheel to select the row. 
2. Turn the navigation wheel to go to a different row. 
3. Press the navigation wheel again to select the column. 
4. Turn the wheel to go to a new column. 
5. Press the navigation wheel or ENTER when selection is complete. The new channel is displayed. 

After CLS (on the lower line of the display), the closed channels are listed. If no channels are closed, 
<none> is displayed here. If the list of closed channels extends past one screen, "…" is displayed at 
the end of the lower line. To see the full list of closed channels, press DISPLAY until the list of closed 
channels is displayed. 

For the Model 707B, also see Selecting channels from the front panel (on page 2-15) to select a 
channel. 

 

Display during setup 
During setup, the display shows menu choices that you can use to configure the instrument. 

To use the menus, you use the navigation wheel  to scroll through menu options. When a menu item 
is selected, it blinks. Press the navigation wheel  or ENTER to select an option. 

In the following figure, the Main Menu is displayed, with arrows showing that there are additional 
menu items. 

 

Figure 15: Front-panel Main Menu display 

 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-14 707B-901-01 Rev. B / January 2015 

 

Crosspoint display (Model 707B only) 
The crosspoint display on the front panel of the Model 707B displays information about the slots that 
contain cards and the open and closed state of the channels for one card slot at a time. If there are 
no cards in the instrument's slots, the crosspoint display shows "No card in unit." 

 

Figure 16: Model 707B crosspoint display 

 
 

The crosspoint display has a list of slots on the right. To the left of the slot list are lights that show you 
an overview of the cards in the instrument's slots. 

Figure 17: Model 707B slot indicators 

 

The red lights indicate closed channels. If a red light is on, a channel in that slot is closed. If the red 
light is not lit for a slot, all channels in that slot are open. In the figure above, the card in slot 2 has at 
least one closed channel. 

The yellow lights indicate which slots contain a card and which slot is presently displayed on the 
crosspoint display. When a yellow light is on, the slot contains a card. When a yellow light is off, the 
slot does not contain a card. If the yellow light is brighter than the others, that slot is being displayed 
on the crosspoint display. In the figure above, there are cards in five slots, no card in slot 5, and the 
channels for the card in slot 3 are displayed on the crosspoint display. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-15 

 

Crosspoint display description 
The crosspoint display displays all channels for one card slot at a time. If there are no cards in the 
instrument's slots, the crosspoint display shows "No card in unit." 

The rows are labeled by default with the slot number following by the row number. For example, slot 1 
would start with 1A, 1B and slot 2 would start with 2A, 2B and so on. 

The columns are labeled by default as 01, 02, and so on. 

If a red light is on at a row-column crosspoint, the channel at the crosspoint is closed. If no red light is 
on, the channel is open. Channels appear in different LED intensities when a row is selected. 
Channels that are closed appear brighter than ones that are presently selected. 

 

You can change the label names; see Set up labels (on page 2-91). 
 

You can also open and close channels by pressing CHAN to use the CHANNEL ACTION menu 
options (on page 2-20). 

 

Selecting channels from the front panel 
From the front panel, you can change the display to show another card slot, choose a specific 
channel, and open and close channels. For the 707B, the crosspoint display shows you the status of 
the channels for one card at a time. 
To display a different slot: 

Press the navigation wheel, then turn the navigation wheel to the right to go to the next slot or to the 
left to go to the previous slot. You must go through all of the rows on one slot to go to the next slot. 

 

To choose a specific row: 
1. When you are displaying the slot that contains the row, press the navigation wheel . The red 

lights for that row are displayed. 
2. Turn the navigation wheel  to go to the row you want to select. 
3. Press the navigation wheel  to select the row. The red lights for each crosspoint in the row are 

on, as shown in the following figure. 
 

Figure 18: One row selected 

 
 

On the Model 707B, if you scroll past the last row, you will go to the next slot. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-16 707B-901-01 Rev. B / January 2015 

 

To choose a specific column in the selected row: 
1. After choosing the row, press the navigation wheel . A column of red lights is displayed. 
2. Turn the navigation wheel  to go to the column. Note that scrolling through the columns will not 

scroll through slots as scrolling through rows does. 
3. Press the navigation wheel  to select the column and row. This channel is now displayed on the 

bottom display. 
 

To open and close channels: 

You can use the crosspoint display to view the open or closed status of a specific channel crosspoint. 

After selecting the channel crosspoint so that the channel is displayed on the bottom display, you can 
press OPEN or CLOSE to open or close the channel. 

 

Keys and navigation wheel 
The keys and navigation wheel  on the front panel allow you to turn on, set up, and operate the 
instrument from the front panel. 

 

The POWER switch. Press this key to turn the instrument on (|). Press it again to turn the instrument 
off (0). 

 

Navigation wheel 
Turn the navigation wheel  to scroll to a menu option or to change the selected value. 

Push the navigation wheel  to open menus or to select a menu option or a value. In most cases, 
pressing the navigation wheel  performs the same action as pressing the ENTER key. 

On the Model 707B, you can use the navigation wheel  to control which slot is displayed on the 
crosspoint display. 

 

To change a value with multiple characters: 
1. Turn the navigation wheel  to go to the character you want to change (the character blinks when 

selected). 
2. Press the navigation wheel  to edit that character. 
3. Turn the navigation wheel  to change the value. 
4. Press the navigation wheel  to keep the change. 
5. Repeat these steps as needed to change the value. 
6. Press the ENTER key or the navigation wheel  when finished changing all the characters. 

 

Front-panel keys 
The DISPLAY key cycles between three screens: The channel display or pattern display, the closed 
channel list, and the user screen text, which is set with display.settext() (on page 7-79). 

When the closed channel listing is displayed, if the list of channels is longer than one screen, you can 
use the navigation wheel  to scroll though the list of closed channels. 

 

The CONFIG key c accesses attribute menus in which you can configure channels and scans. 

CONFIG and then CHAN opens the Channel Attribute menu. 

CONFIG and then SCAN opens the Scan Attribute menu. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-17 

 

Keys 
 

The top row of keys under the display allows you to open and close channels, work with scan lists, 
and load and run scripts. 

Figure 19: Models 707B and 708B top row of keys 

 

 
 

 

Key descriptions 

Key Description 

OPEN ALL Opens all closed channels. 
STEP If a scan list has been defined, press STEP to step through the list. 

Each press is one scan step. See Basic scan procedure (on page 
3-5). 

OPEN Opens the selected channel or channel pattern. 
CLOSE Closes the selected channel or channel pattern. 
LOAD Loads code or scripts that can be run from the front panel. 
RUN Runs the last code or script selected through the LOAD key. 
INS Appends the selected channel or channel pattern to the scan list. 
DEL Deletes the first occurrence of the selected channel or channel 

pattern from the scan list. 

 

Also see: 

• For detail on using OPEN ALL, STEP, OPEN, and CLOSE: Closing and opening channels (on 
page 2-86). 

• For detail on using LOAD and RUN: LOAD TEST menu options (on page 2-19). 
• For detail on using INS and DEL: Front-panel scanning (on page 3-6). 

 

The bottom row of keys allow you access menus and set up channels, patterns, cards, scans, 
triggers, and general instrument operation. 

Figure 20: Bottom row of keys 

 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-18 707B-901-01 Rev. B / January 2015 

 

 

Key descriptions 

Key Description 

CHAN If a channel is displayed, opens the CHANNEL ACTION menu options (on page 2-20), 
which allows you to open and close channels. If a pattern is displayed, pressing CHAN 
switches to channel view. 

PATT If a pattern is displayed, opens the PATTERN ACTION menu options (on page 2-21), which 
allows you to manage patterns, open and close patterns, and reset them. If a channel is 
displayed, pressing PATT changes to display a pattern. 

SLOT Displays information about the installed cards and the instrument. Information includes the 
firmware revision, model name, and model number. 

SCAN Opens the SCAN ACTION menu options (on page 2-21), which allows you to run, manage, 
view, and reset scan lists. See Scanning and triggering (on page 3-1). 

TRIG Generates a trigger that can be used in a script or the trigger model. See Scanning and 
triggering (on page 3-1). Also see display.trigger.EVENT_ID (on page 7-80). 

MENU Opens the Main menu options (on page 2-22), which allows you to manage scripts, manage 
communications, select channel connections, test the keys, test the display, manage digital 
I/O settings, set up the beeper, and display instrument information. 

EXIT This key: 
• Cancels the current selection and returns to the previous menu item. 
• Exits remote operation so you can control the instrument from the front panel. 
• Aborts a scan that is running. 
• Aborts a script that is executing. 

ENTER Accepts the current selection or brings up the next menu option. In most cases, pressing 
ENTER is the same as pressing the navigation wheel . 

 
 

LAN status indicator 
The LAN status indicator is lit when the instrument is connected through the local area network (LAN) 
with no errors. 

If this is not lit, the instrument is not connected through the LAN or there is a connection problem. 

If you are using the web interface, the LAN status indicator blinks when you click the ID button in the 
upper right corner on the home page. 

See LAN communications (on page 2-35) for more information. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-19 

 

Set beeper and key clicks 
You can turn the instrument beeper and key click sounds on or off. 

Disabling the beeper also disables the keyclicks. To enable keyclicks, you must also enable the 
beeper. 

To change the beeper or key click sounds from the front panel: 
1. Press MENU. 
2. Use the navigation wheel  to select BEEPER. 
3. Select KEYCLICK or BEEP. 
4. Select ENABLE or DISABLE. 
5. Press ENTER or press the navigation wheel  to save the change. 
6. Press EXIT (LOCAL) to return to the Main Menu. 

 

Menu options 
The menus that can be accessed from the front panel of the instrument allow you to set up and run 
the instrument. 

 

LOAD TEST menu options 
Allows you to run scripts and code from the front panel that you created through the communication 
interface, or configuration scripts created by pressing the front-panel MENU key, then selecting 
SCRIPT > CREATE-CONFIG. 

To open this menu, press LOAD. 

The User option loads code that was added to Load Test with the display.loadmenu.add() (on page 7-
70) command. 

The Scripts option loads named scripts that were added to the run-time environment. 

After selecting code or script from the User or Scripts option, you can press RUN to execute the 
selected code or script. 

 

Channel Attribute Menu options 
The options in the Channel Attribute Menu allow you to configure channels from the front panel. 

To open the Channel Attribute Menu, go to channel view. Select the channel for which you want to 
set attributes, then press CONFIG, then press CHAN. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-20 707B-901-01 Rev. B / January 2015 

 

The options are: 

• LABEL: Sets the label that is displayed on the front panel for the specified channel. 
• LABEL-ROW: Sets the label that is displayed on the front panel for the specified row.  
• LABEL-COL: Sets the label that is displayed on the front panel for the specified column.  
• FORBID: Allows you to prevent the channel from being closed. 
• DELAY: Sets delay time (in addition to settling time) for the specified channels. Enter the value 

for the delay in 1ms steps from 0 to 60 seconds for a channel. 
• COUNT: Displays closure cycles for the specified channel. 

For more information about channel attribute settings, see Channel attributes (on page 2-90). 
 

Scan Attribute Menu options 
Use the options in this menu to configure scans from the front panel. 

To open this menu, press CONFIG, then press SCAN. 
 

Options include: 

• ADD: Reminder that you need to use INS to add channels or channel patterns to a scan. 
• BYPASS: Allows you to bypass the trigger for the first step of the first scan. See Trigger model 

(on page 3-1) for more information. 
• MODE: Selects how the scan initializes the instrument when the scan is executed. Choose 

OPEN-ALL to open all channels or OPEN-SELECT to open only those involved in the scan. 
• SCAN_CNT: Sets the scan count, which is the number of times that the instrument repeats the 

steps in a scan. After repeating the steps this number of times, the instrument returns to idle. 

For information on configuring scans, see Changing attributes of an existing scan (on page 3-6). 
 

CHANNEL ACTION menu options 
Allows you to change the state of channels from the front panel. 

To open this menu, display a channel, then press CHAN. 
 

Options include: 

• OPEN: Opens the selected channel. 
• CLOSE: Closes the selected channel. 
• EXCLOSE: Closes the selected channel and opens any closed channels on the instrument. 
• EXSLOTCLOSE: Closes the specified channel and opens any closed channels on the same slot. 

Channels on other slots remain closed. 
• RESET: Restores the factory default settings to the selected channel. Resetting a channel 

deletes any channel patterns that contain that channel. 
 

For more information, see Working with channels (on page 2-80). 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-21 

 

PATTERN ACTION menu options 
Allows you to configure and change patterns from the front panel. 

To open this menu, in pattern view, press PATT. 
 

Options include: 

• CREATE: If no patterns have been created, this is the only option that is displayed. Allows you to 
create a new pattern. 

• OPEN: Opens the channels in the selected channel pattern. 
• CLOSE: Closes the channels in the selected channel pattern. These closures are appended to 

any channels that are already closed. 
• EXCLOSE: Closes the channels in the selected pattern so that the channels associated with the 

pattern are exclusively closed. Any previously closed channels are opened. 
• EXSLOTCLOSE: Exclusively closes the channels in the specified channel pattern for the 

selected slots. 
• VIEW: Displays the channels that are in the selected pattern. 
• DELETE: Deletes the channel pattern. 
• RESET: Displays options that allow you to reset the channels in the selected channel pattern to 

factory default settings. Resetting a channel pattern causes that pattern to be deleted because 
when channels are reset, they delete patterns that contain them. 

For information about working with channel patterns, see Channel patterns (on page 2-92). 
 

SCAN ACTION menu options 
Allows you to work with the scan lists from the front panel. You must have a scan list created before 
using this option. See Basic scan procedure (on page 3-5) for information. 

To open this menu, press SCAN. 
 

Options include: 

• BACKGROUND: Runs the scan while allowing front panel operation. 
• CREATE: Reminder that you must use the INS key to create a scan list. 
• LIST: Displays the scan list. Use the navigation wheel  to scroll through the channels. 
• CLEAR: Clears the scan list. 
• RESET: Resets the scan settings to the factory default settings, which includes clearing the scan 

list. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-22 707B-901-01 Rev. B / January 2015 

 

Main menu options 
The options in the main menu allow you to create a configuration script, set up communications, 
verify and set some instrument operation, set up digital input/output, and get instrument information. 

To open the main menu, press MENU. 

 

Main Menu options 

Option Description Also see 

SCRIPT Option for creating a script that stores 
the present configuration of the 
instrument. 

Save the present configuration (on page 2-98) 

GPIB Options for setting up GPIB 
communications. 

GPIB setup (on page 2-30) 

DDC Options that allow you to run existing 
707A or 708A applications. 

Using Models 707A and 708A compatibility mode 
(on page B-1) 

LAN Options for setting up LAN 
communications. 

LAN communications (on page 2-35) 

TSPLINK Options for configuring TSP-Link. TSP-Link system (on page 6-44) 
CHANNEL Select a connection rule to determine 

the order in which switch channels 
are opened and closed, and select 
whether to connect sequentially. 

Connection methods for close operations (on page 
2-82) 

DISPLAY Verify operation of the keys, display, 
and crosspoint display LEDs. 

Testing the display, keys, and channel matrix (on 
page 8-9) 

DIGIO Options for controlling the digital input 
and output lines. 

Digital I/O port (on page 2-7) 

BEEPER Enables or disables the instrument 
key clicks and beeps. 

Set beeper and key clicks (on page 2-19) 

UNIT-INFO Displays the firmware version, serial 
number, memory usage, and fan 
status. Fan status is 707B only. 

Check fan status (on page A-2) 

RESET Resets the instrument. Reset (on page 5-11) 

 

Remote communications interfaces 
This section shows you how to connect instruments to the following remote communication 
interfaces: 

• Universal serial bus (USB) 
• Local area network (LAN) 
• General purpose interface bus (GPIB or IEEE-488) 

The USB can be used for single ASCII-based commands. 

It describes how to configure and troubleshoot these interfaces on computers with Windows 2000, 
Windows XP, Windows Vista, and Windows 7 operating systems. 

It also describes the I/O software, drivers, and application software that can be used with Keithley’s 
instruments. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-23 

 

USB communications 
To use the rear-panel USB port, you must have the Virtual Instrument Software Architecture (VISA) 
layer on the host computer. See How to install the Keithley I/O Layer (on page 2-59) for more 
information. 

VISA contains a USB-class driver for the USB Test and Measurement Class (USBTMC) protocol that, 
once installed, allows the Microsoft® Windows® operating system to recognize the instrument. 

 

When you connect a USB device that implements the USBTMC or USBTMC-USB488 protocol to the 
computer, the VISA driver automatically detects the device. Note that the VISA driver only 
automatically recognizes USBTMC and USBTMC-USB488 devices. It does not recognize other USB 
devices, such as printers, scanners, and storage devices. 

In this section, "USB instruments" refers to devices that implement the USBTMC or 
USBTMC-USB488 protocol. 

 

The full version of National Instruments (NI®) VISA provides a utility to create a USB driver for any 
other kind of USB device that you want to communicate with VISA. For more information, see the 
National Instruments (see National Instruments - http://www.ni.com) website. 

 

Using USB 
A USB cable is shipped with the instrument. If the original cable is not available, you will need a USB 
cable with a USB Type B connector end and a USB type A connector end. You will need a separate 
USB cable for each instrument you plan to connect to the computer at the same time using the USB 
interface. 
To use a USB connection: 
1. Connect the Type A end of the cable to the host computer. 
2. Connect the Type B end of the cable to the instrument. 
3. Turn power to the instrument on. 
4. When the host computer detects the new USB connection, the Found New Hardware Wizard 

starts. 
5. On the "Can Windows connect to Windows Update to search for software?" dialog box, click No, 

and then click Next. 
6. On the "USB Test and Measurement device" dialog box, click Next, and then click Finish. 

 

Communicate with the instrument 
To communicate with the USB device, you need to use NI-VISATM. VISA requires a resource string in 
the following format to connect to the correct USB instrument: 

USB[board]::manufacturer ID::model code::serial number[::USB interface number][::INSTR] 

This requires that you determine the parameters. You can gather this information by running a utility 
that automatically detects all instruments connected to the computer. 

If you installed the Keithley I/O Layer, the Keithley Configuration Panel is available from the 
Microsoft® Windows® Start menu in the Keithley Instruments menu. 

 

http://www.ni.com/


Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-24 707B-901-01 Rev. B / January 2015 

 

To use the Keithley Configuration Panel to determine the VISA resource string: 
1. Start the Keithley Configuration Panel. The Select Operation dialog box is displayed. 
2. Select Add. 

 

Figure 21: Select Operation dialog box 

 
 
 

3. Click Next. The Select Communication Bus dialog box is displayed. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-25 

 

Figure 22: Select Communication Bus dialog box 

 
 
 

4. Select USB. 
5. Click Next. The Select Instrument Driver dialog box is displayed. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-26 707B-901-01 Rev. B / January 2015 

 

Figure 23: Select Instrument Driver dialog box 

 
 

6. Select Auto-detect Instrument Driver - Model. 
7. Click Next. The Configure USB Instrument dialog box is displayed with the detected instrument 

VISA resource string displayed. 
 

Figure 24: Configure USB Instrument dialog box 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-27 

 

 
8. Click Next. The Name Virtual Instrument dialog box is displayed. 

 
 

Figure 25: Name Virtual Instrument dialog box 

 
 

9. In the Virtual Instrument Name box, enter a name that you want to use to refer to the instrument. 
10. Click Finish. 
11. Click Cancel to close the Wizard. 
12. Save the configuration. From the Configuration Utility, select File > Save. 
13. In the Keithley Communicator, select File > Open Instrument to open the instrument you just 

named. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-28 707B-901-01 Rev. B / January 2015 

 

Figure 26: Keithley Communicator Open an Instrument 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-29 

 

14. Click OK. 
15. Send a command to the instrument and see if it responds. 

Figure 27: Send a command to the instrument 

 
 

If you have a full version of NI VISA on your system, you can run NI-MAX or the VISA Interactive 
Utility. See their documentation for information. 

If you have the Agilent IO Libraries on your system, you can run Agilent Connection Expert to check 
out your USB instruments. See their documentation for information. 

 

Additional USB information 
This section provides further details and more advanced information about the USB bus and 
test-and-measurement instruments. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-30 707B-901-01 Rev. B / January 2015 

 

Connecting multiple USB instruments to the computer 

The most convenient way to connect USB instrumentation to the computer is to plug a USB cable 
directly from the instrument to the computer. If you have more than one USB instrument or have other 
USB devices, such as printers, keyboards, and mice, you might not have enough USB connectors on 
the computer. 

To gain more ports, you can use a USB hub or add more USB controller cards if you have available 
PCI or PCI Express slots. 

There are two types of USB hubs that you can use with Model 707B or 708B: 

• Bus powered: This type of hub draws its power from the USB bus and can only supply 100 mA 
(USB 2.0) per port. 

• Self powered: This type of hub has an external power supply and can supply up to 500 mA per port 
(USB 2.0). 

 

USB VISA identifiers 

The USB identifiers to communicate with your Keithley instrument using VISA are: 

• 707B: USB0::0x05E6::0x707B::[serial number]::INSTR 
• 708B: USB0::0x05E6::0x708B::[serial number]::INSTR 

Where: 

• USB0: USB interface 
• 0x05e6: The Keithley vendor ID (assigned to Keithley Instruments by the USB Implementers Forum, 

Inc.) 
• 707B or 708B: Instrument model number 
• [serial number]: The serial number of the instrument (the serial number is also on the rear panel) 
• INSTR: Use the USBTMC protocol 

 

GPIB setup 
This section contains information about GPIB standards, connections, and address selection. 

The GPIB connector is optional and may not be present on your instrument. 

 
 

GPIB standards 
The GPIB is the IEEE-488 instrumentation data bus, which uses hardware and programming 
standards originally adopted by the Institute of Electrical and Electronic Engineers (IEEE) in 1975. 
The instrument is IEEE Std 488.1 compliant and supports IEEE Std 488.2 common commands and 
status model topology. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-31 

 

GPIB quick start 
Install the GPIB driver software 

Check the documentation for your GPIB controller for information about where to acquire drivers. 
Keithley Instruments also recommends that you check the website of the GPIB controller for the latest 
version of drivers or software. 

It is important that you install the drivers before you connect the hardware. This prevents associating 
the incorrect driver to the hardware. 

 

Install the GPIB cards in your computer 

Refer to the documentation from the GPIB controller vendor for information about installing the GPIB 
controllers. 

 

Connect the GPIB cable 

To connect an instrument to the GPIB bus, use a cable equipped with standard IEEE-488 connectors, 
as shown below. 

 

Figure 28: GPIB connector 

 
 

To allow many parallel connections to one instrument, stack the connectors. Each connector has two 
screws to ensure that connections remain secure. The figure below shows a typical connection 
diagram for a test system with multiple instruments. 

 

Figure 29: IEEE-488 connections 

 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-32 707B-901-01 Rev. B / January 2015 

 

To avoid possible mechanical damage, stack no more than three connectors on any one instrument. 
To minimize interference caused by electromagnetic radiation, use only shielded IEEE-488 cables. 
Contact Keithley Instruments for shielded cables. 

 

To connect the instrument to the IEEE-488 bus, line up the cable connector with the connector on the 
rear panel. Install and tighten the screws securely, making sure not to overtighten them. The following 
figure shows the location of the connector. 

 

Figure 30: Model 707B rear panel IEEE-488 connection 

 

Connect any additional connectors from other instruments as required for your application. Make sure 
the other end of the cable is properly connected to the controller. You can only have 15 devices 
connected to an IEEE-488 bus, including the controller. The maximum cable length is either two 
meters (6.5 feet) multiplied by the number of devices or 20 meters (65.6 feet), whichever is less. 
Erratic bus operation may occur if you ignore these limits. 

 

 
 

 
 

Figure 31: Model 707B rear panel IEEE-488 connection 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-33 

 

 
 

Figure 32: Model 708B rear panel IEEE-488 connection 

 
 

Set the GPIB address 

The GPIB address is set to 16 at the factory. The address can be set to any address value from 0 to 
30. However, the address must be unique in the system. It cannot conflict with an address that is 
assigned to another instrument or to the GPIB controller. 
To change the GPIB address: 
1. Press the MENU key. 
2. Select GPIB > ADDRESS. Press the navigation wheel  to display the current address. 
3. Choose the appropriate GPIB address. 
4. Press ENTER to save the address. 

The address value is saved in nonvolatile memory and will not change when a reset() (on page 7-
135) command is sent or when the power is turned off and then turned on again. 

When the GPIB bus is operating, you can use the gpib.address (on page 7-92) attribute to change the 
GPIB address remotely. 

 

Enable GPIB 

By default, the instrument is set to GPIB enabled. You only need to enable it if GPIB control was 
disabled. 
To enable control through the GPIB: 
1. Press the MENU key. 
2. Select GPIB. Press the navigation wheel  to display the GPIB MENU. 
3. Select ENABLE. Press the navigation wheel . 
4. To enable GPIB, select ON. To disable it, select OFF. 
5. Press ENTER to save the setting. 

You must turn the instrument on and off before the setting takes effect. 
 

Communicate with instruments 

The GPIB driver software you installed installs a interactive dumb terminal program that allows you to 
send commands to the instrument. They directly call the GPIB driver support libraries. 

For the KPCI-488LPA and KUSB-488B GPIB controller from Keithley Instruments, the configuration 
utility is called the KI-488 Diagnostic Tool. It is available from the Windows Start menu at Keithley 
Instruments > KI-488 > KI-488 Diagnostic Tool. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-34 707B-901-01 Rev. B / January 2015 

 

For the KUSB-488A GPIB controller from Keithley Instruments, the configuration utility is called 
TrTest. It is available from the Windows Start Menu at Keithley Instruments > GPIB-488-CEC > 
TrTest. 

For National Instruments GPIB controllers, you can use NI-MAX. Start NI-MAX. If your hardware is 
installed correctly, you should see the controller in the GPIB section of the tree control on the left 
side. Select it and right-click to see an option to communicate with the instrument. 

 

If you want to use the GPIB controller with instrument driver (such as VXIPnP or IVI) or high-level 
software, you must also install I/O software, which installs the VISA layer. See How to install the 
Keithley I/O Layer (on page 2-59). 

 

Terminator 

When receiving data over the GPIB, the instrument terminates messages on any line feed character 
or any data byte with EOI asserted (line feed with EOI asserted is also valid). When sending data, it 
appends a line feed character to all outgoing messages. The EOI line is asserted with the terminating 
line feed character. 

However, if you want your program to communicate with all I/O buses on the instrument (GPIB, USB, 
LAN (VXI-11 and raw socket)), it is good practice to add a line feed to the end of the outgoing 
command. Use VISA and the same program will work with all the I/O buses by changing the resource 
string in the VISA Open method. 

 

GPIB reference 
 

 

Configure the GPIB controllers 

Each instrument on a GPIB bus needs a unique address from a range of 0 to 30. Generally, the GPIB 
host controller is on address 0. However, there are GPIB controllers that adopt the address of 21. To 
be safe, do not configure any of the instruments for 21 or 0. 

If you do need to change the host controller address, consult the controller documentation. 

For the KPCI-488LPA and KUSB-488B GPIB controller from Keithley Instruments, the configuration 
utility is called the KI-488 Diagnostic Tool. It is available from the Microsoft® Windows® Start menu at 
Keithley Instruments > KI-488 > KI-488 Diagnostic Tool. 

 

For the KUSB-488A GPIB controller from Keithley Instruments, the configuration utility is called GPIB 
Configuration. It is available from the Windows Start Menu at Keithley Instruments > GPIB-488 > 
GPIB Configuration. 

For National Instruments (NITM) GPIB controllers, you can use NI-MAX. Start NI-MAX. If your 
hardware is installed correctly, you will see the controller in the GPIB section of the tree control on the 
left side. Select it and right-click to see an option to configure the controller. Do not forget to save 
your settings. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-35 

 

LAN communications 
You can communicate with the instrument using a local area network (LAN). 

When you connect using a LAN, you can use a web browser to communicate with the instrument 
through the instrument's internal web page and other web applets. 

Models 707B and 708B are class C LXI compliant. They are scalable test instruments with direct 
connections to host computers. They can also interact with a DHCP or DNS server and other LXI 
compliant instruments on a LAN. 

The Models 707B and 708B are compliant with IEEE standard 802.3 (Ethernet) and support full 
connectivity on a 10 Mbps or 100 Mbps network. 

Contact your network administrator to confirm your specific network requirements before setting up a 
LAN connection. 

 

LAN quick start 
Overview 

This section describes how to connect an instrument directly to a computer using a LAN connection. 
To do this, you will: 

1. Identify and record network settings. 
2. Configure the network settings on the computer and instrument. 
3. Create a direct instrument-to-PC LAN connection. 
4. Set up an IP address between the computer and the instrument. 
5. Access the instrument's internal web interface. 

 

Configure the computer's network interface card to obtain an IP address automatically 

Do not change your IP address without consulting your system administrator. Entering an incorrect 
IP address can prevent your computer from connecting to your corporate network. 

 

Identify and record the existing IP configuration 

You are responsible for returning settings to their original configuration before reconnecting the 
computer to a corporate network. Failure to do this could result in damage to your equipment or loss 
of data. These settings include, but are not limited to, the IP address, DHCP enabled mode, and the 
subnet mask. 

 

Record the existing IP configuration information for the computer in the table below so that you can 
return all settings back to their original configuration before reconnecting your computer to a 
corporate network. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-36 707B-901-01 Rev. B / January 2015 

 

 

DHCP Enabled  

IP Address  

Subnet Mask  

Default Gateway  

DNS Servers  
 

Set up automatic IP address selection 

If you are connecting to a LAN that has a DHCP server or if you have a direct connection between the 
instrument and a host computer, you can use automatic IP address selection. 

If you select Auto, the instrument attempts to get an IP address from a DHCP server. If this fails, it 
reverts to an IP address in the range of 169.254.1.0 through 169.254.254.255. 

Both the host computer and the instrument should be set to use automatic LAN configuration. 
Though it is possible to have one set to manual configuration, it is more complicated to set up. 

To set up automatic IP address selection: 
1. Select Obtain an IP address automatically. 
2. Click OK. Close the network settings dialog boxes. 

 

Configure the instrument to obtain an IP address automatically 
1. From the front panel of the instrument, press the MENU key. 
2. Use the navigation wheel to select LAN > CONFIG > METHOD. Press the navigation wheel to 

display the METHOD menu. 
3. Select AUTO. Press the navigation wheel to select AUTO and return to the LAN CONFIG menu. 
4. Press the EXIT key once to return to the LAN MENU. 
5. Select APPLY. Press the navigation wheel to apply the setting. The Main Menu is displayed. 

 

Connect the LAN cable 

Connect the LAN connector between the rear panel of the instrument and the host computer or 
network router. You can use an LAN crossover cable (RJ-45, male/male) or straight-through cable. 
The instrument automatically senses which cable you have connected. 

The location of the LAN connector on the instrument is shown below. 
 

The TSP-Link connectors will accept a LAN connection, but will not be identified as a LAN and will 
not connect properly. Be sure to connect the LAN connector correctly. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-37 

 

Figure 33: Model 707B rear panel LAN connection 

 
 

z 
 

Wait for the LAN status indicator on the front panel to turn solid green 

A solid green LAN status indicator confirms that the instrument was assigned an IP address. Note 
that it may take several minutes for the computer and instrument to establish a connection. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-38 707B-901-01 Rev. B / January 2015 

 

Install LXI Discovery Browser software on your computer 

You can use the LXI Discovery Browser to identify the IP addresses of LXI-certified instruments. 
Once identified, you can double-click the IP address in the LXI Discovery Browser to open the web 
interface for the instrument. 

The Keithley LXI Discovery Browser is available on the Keithley Instruments website 
(http://www.keithley.com). 

To locate the Keithley LXI Discovery Browser on the Keithley website: 
1. Select the Support tab. 
2. In the model number box, type 707B. 
3. From the list, select Software and click the search icon. A list of software applications for the 

instrument is displayed. 
4. See the readme file included with the application for more information. 

For more information about the LXI Consortium, see the LXI Consortium website 
(http://www.lxistandard.org/). 

 

Run the LXI Discovery Browser 
To run the LXI Discovery Browser software: 
1. From the Microsoft Windows Start menu, select Keithley Instruments. 
2. Select LXI Discovery Browser. 
3. Click LXI Discovery Browser. The Keithley LXI Discovery Browser window is displayed. 

The LXI Discovery Browser displays the instruments that it finds on the network and their 
associated IP addresses. 

4. Double-click an IP address in the LXI Discovery Browser dialog box. The instrument web page for 
that instrument opens. 

 

LAN reference 
Overview of LAN instruments 

When Ethernet ports became standard on computers, it was logical that instrumentation would follow. 
The VXI-11 protocol, which was standardized on in the early 1990s, is the standard used to emulate 
GPIB over Ethernet. 

Even though Ethernet became the standard LAN technology on instruments, LAN instruments from 
different vendors differed in the approach they took. Some vendors only supported static IP, whereas 
others had DHCP, DLLA (Auto-IP), and static addressing. The LXI consortium was started to 
standardize what should be in all instruments that conform to LXI. 

 

An instrument that conforms to LXI version 1.3 must have the following: 

• All three IP addressing modes: DHCP, Auto-IP, and static IP. 
• A web server that has some standard Ethernet configuration parameters: 

• IP configuration: IP address, subnet mask, gateway. 
• Password protection on anything that might change the instrument state. 
• A control on the web page that flashes an LED or some form of indicator on the front panel of the 

instrument. LXI calls this the Device Identification Functionality. This allows you to identify the web 
page you are currently looking at with the instrument. This helps you identify a specific instrument 
in a rack of similar model instruments. 

 

http://www.keithley.com/
http://www.lxistandard.org/


Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-39 

 

• A reserved URL in the instrument that provides an xml document that has standard configuration 
information. This can be useful for software tools that need to identify the instruments and their 
capabilities. The URL is http://<host>:<port>/lxi/indentification. 

• An IVI driver for the instrument. 
• A LAN Status (fault) indicator. 
• VXI-11 discovery protocol. 
• LAN reset button or menu option. LXI calls this the LAN Configuration Initialize (LCI). 

 
When the LXI-defined LAN reset is selected, the instrument reverts its LAN settings to a known set of 
defaults. The default LAN settings for LXI instruments are: 
• DHCP and Auto-IP enabled. LXI refers to this as the Auto IP address mode (compared to the 

manual address mode, which is fixed or static IP addressing). 
• Web password is reset to the factory default.  
• Ping responder enabled. 

• Dynamic DNS and mDNS enabled. 

LXI Version 1.3 added the requirement of mDNS (multicast DNS) discovery. 
 

Instrument LAN protocols 
Raw socket communications 

All Keithley instruments that have LAN connections support raw socket communication. This means 
that you can connect to the TCP/IP port on the instrument and send and receive commands. There is 
no extra protocol overhead above and beyond what TCP gives you. A programmer can easily 
communicate with the instrument using Winsock on Windows computers or Berkley sockets on Linux 
or Apple computers. 

The port number to use for connections differs with instrument models: 

• 707B and 708B: Port 5025 
 

Dead socket connections 

If a computer is connected to an instrument through TCP and the computer application is terminated 
without releasing the socket, it can leave the port on the instrument “hanging”. You cannot reconnect 
to it without switching the power to the instrument off and then back on. 

To avoid cycling power when this occurs, some instruments have a dead socket port (sometimes 
known as a backdoor). The dead socket termination port is used to terminate all existing LAN 
connections. This port cannot be used for command and control functions. 

Use the dead socket termination port to manually disconnect a dead session on any open socket. All 
existing LAN connections are terminated and closed when the connection to the dead socket 
termination port is closed. 

The dead socket termination port for Models 707B and 708B is 5030. Connect to this port, and then 
when you disconnect, the dead port will be cleaned up (released) 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-40 707B-901-01 Rev. B / January 2015 

 

VXI-11 

VXI-11 is a LAN protocol that emulates GPIB over Ethernet. It uses remote procedure calls to call 
functions in the instrument for creating a link, sending data, reading data, and so on. There is also a 
small header that indicates how much data is being sent. This means there is some overhead added. 
Therefore VXI-11 is slower than raw socket communication. On the other hand, with VXI-11, the 
programmer or driver writer does not have to confirm that the correct number of bytes have been sent 
and received. 

VXI-11 also supports an out-of-band channel, which allows the instrument to signal to the computer 
that an event, such as a SRQ, has occurred. 

VXI-11 has a limitation in that it uses broadcast packets to locate the instrument when it wants to 
make a connection. 

Models 707B and 708B use port 1024 for VXI-11 communication. You do not have to know this port 
number to connect through VXI-11. The discovery portion of the protocol will negotiate the port 
number for you. If you are trying to configure a firewall, this port number might be useful. 

 

LAN network types 

Ethernet is a type of Local Area Network (LAN) that works with a variety of transmission media. Some 
of the more popular variations are 10/100BaseT, 10Base2, and 10BaseF, which use unshielded 
twisted pair (UTP), coaxial cable, and optical fiber, respectively. 

Most of Keithley’s instruments work with a 10/100 BaseT network and use a standard RJ-45 
connector. This is an eight-wire connector, but only four wires are used: one pair to transmit and one 
pair to receive data. A 10BaseT network can accommodate transmission speeds up to 
10Mbits/second; 100BaseT operates at up to 100Mbits/second. Both types of networks usually 
require Ethernet hubs to make connections. The exception is a one-to-one connection using a 
crossover cable (see below). 

The LAN connector on an instrument gives you more flexibility than GPIB and RS-232 interface 
controller-subordinate configurations. Rather than connecting the instrument directly to a computer 
controller in a closed loop, a LAN instrument can be connected to a TCP/IP network using its own 
subnetwork, or it can be connected directly to an existing network, including a corporate intranet. 

 

One-to-one connection 

With most instruments, a one-to-one connection is done only when you are connecting a single 
instrument to a single network interface card. 

A one-to-one connection using a network crossover cable connection is similar to a typical RS-232 
hookup using a null modem cable. The crossover cable has its receive (RX) and transmit (TX) lines 
crossed to allow the receive line input to be connected to the transmit line output on the network 
interfaces. 

Figure 34: One-to-one connection with a crossover cable 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-41 

 

The Models 707B and 708B supports Auto-MDIX and can use either normal LAN CAT-5 cables 
(patch) or crossover cables. The instrument automatically adjusts to support either cable. 

 

One-to-many connection 

With a LAN hub, a single network interface card can be connected to as many instruments as the hub 
can support. This requires straight-through network (not crossover) cables for hub connections. 

 

The advantage of this method is easy expansion of measurement channels when the test 
requirements exceed the capacity of a single instrument. With only the instruments connected to the 
hub, this is an isolated instrumentation network. However, with a corporate network attached to the 
hub, the instruments become part of the larger network. 

 

Figure 35: One-to-many connection using a network hub or switch 

 
 

Two network card connection 

If you need to connect independent corporate and instrumentation networks, two network interface 
cards are required in the computer controller. Though the two networks are independent, stations on 
the corporate network can access the instruments, and the instruments can access the corporate 
network, using the same computer. 

This configuration resembles a GPIB setup in which the computer is connected to a corporate 
network, but also has a GPIB card in the computer to communicate with instruments. 

 

Figure 36: Two network card connection 

 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-42 707B-901-01 Rev. B / January 2015 

 

Instrumentation connection to enterprise routers or servers 

This connection uses an existing network infrastructure to connect instruments to the computer 
controller. In this case, you must get the network resources from the network administrator. 

Usually, the instruments are kept inside the corporate firewall, but the network administrator can 
assign resources that allow them to be outside the firewall. This allows instruments to be connected 
to the Internet using appropriate security methods. Data collection and distribution can be controlled 
from virtually any location. 

Figure 37: Instrumentation connection to enterprise routers or servers 

 
 

Setting up an isolated instrument network 

The following describes how to set up a simple isolated Class C network for communicating with two 
LAN instruments using static IP addressing. This network example is similar to the network shown in 
One-to-one connection (on page 2-40), but without the corporate network connection to the hub. 

The standard Ethernet hub basically repeats anything it receives from one port, making that data 
available to all its other ports. Hub connections are made with straight-through cables. The hub is 
connected to the network interface card in the computer. The network interface card and its driver 
must be properly installed on the computer according to the manufacturer’s instructions. You can also 
use a switch; the benefit of a switch is that it does not forward network packets out all of the ports. It 
only forwards those that are being addressed by the packet. 

 

To set up the network: 
1. Create IP addresses for the three hosts (the network interface card and two instruments) on the 

network. This is a Class C network, so the subnet mask is 255.255.255.0. From the table in IPv4 
address syntax and subnets (on page 2-45), note that the first three parts of the IP address make 
up the network ID. For purposes of this example, a network ID of 192.68.1 is used, which is the 
default network ID that is shipped with the most of Keithley’s instruments. 
 
If a corporate network is also connected to the same computer using dual network interface 
cards, the instrumentation network ID must be different than the corporate network ID. 

2. Assign the host ID portions of the three IP addresses. In this example, a host number of 1 is 
assigned to the network interface card. The first instrument is assigned a host number of 10 and 
the second instrument becomes host number 20. The complete IP addresses are listed below. 

 

Example host IP address 
Card or instrument IP address 
Network interface card 192.68.1.1 
First instrument 192.68.1.10 
Second instrument 192.68.1.20 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-43 

 

3. In a Windows operating system, use the Windows Control Panel to assign the network interface 
card IP address. The exact steps differ somewhat for each version of Windows. See Windows 
network configuration settings (on page 2-47). 

4.  Using the front-panel menus, assign a unique IP address to each of the other two instruments. 
See Set the IP address on the instrument (on page 2-43). 

 

It is a good idea to record IP addresses for reference. This is especially important when changing the 
existing network settings on the computer. 

 

5. Verify that the instruments and the network have been set up and are working properly. You can 
try logging into the web interface of the instrument to test the connection. See Connect to the 
instrument web interface (on page 2-66). 

6. If you are unable to establish communications, double-check the network settings and try again. 
 

To set the IP address: 
1. From the front panel, press the MENU key. 
2. Use the navigation wheel to select LAN > CONFIG > METHOD. Press the navigation wheel to 

display the METHOD menu. 
3. Select MANUAL. Press the navigation wheel to select your choice and return to the LAN 

CONFIG menu. 
4. Select IP_ADDRESS. Press the navigation wheel  to display the current IP address. 
5. If you are: 

 Connecting directly to a host computer, set all but the last three digits to match the IP address 
of the host computer. Change the last three numbers (after the last decimal point) to a 
number that is unique on the LAN. The last three digits may be anything from 1 to 254 for a 
subnet mask of 255.255.255.0. 

 Connecting to a network: Enter the address provided by your system administrator. 

To set the address, turn the navigation wheel to go to the number that needs to change, then press 
the navigation wheel. Turn the navigation wheel to change the number, then press the navigation 
wheel to set that number. Repeat this for each number that needs to change. 

6. Record the instrument’s IP address. 
7. Press the ENTER key when the IP address is complete. The LAN CONFIG menu is displayed. 
8. Press the EXIT (LOCAL) key once to return to the LAN menu. 
9. Select APPLY. Press the navigation wheel  to save the change. The Main Menu is displayed. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-44 707B-901-01 Rev. B / January 2015 

 

TCP/IP network basics 

Regardless of the type of network connection used, there must be a way to identify each network 
device on a network. A software driver installed in the computer provides the means of controlling the 
instrument. A data communication protocol defines the method of exchanging instructions and data 
between the computer and each instrument. 

When connecting to a corporate network, the network administrator MUST provide all of the network 
settings for the LAN instrument. Failure to use settings provided by the network administrator could 
result in failures at other locations on the corporate network. Failure to work through the network 
administrator could also be considered a breach of company policy. Always consult with the network 
administrator before attempting to connect instrumentation to the network. 

LAN and LXI instruments use the TCP/IP protocol to communicate with other hosts on the network. A 
host is defined as any device on the network that can transmit and receive IP packets. In addition to 
the instrumentation, this includes workstations, servers, and routers. Each host on a TCP/IP network 
is assigned an IP address that is unique to that host. 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-45 

 

 
 

IPv4 addressing 

Models 707B and 708B support IPv4 addressing There are three ways of assigning an IP address to 
a host: DCHP, DLLA, and static. 

 

DHCP 

The Dynamic Host Configuration Protocol (DHCP) protocol is a way for network devices to request 
Internet protocol (IP) parameters such as the IP address, gateway, subnet mask, and DNS server 
addresses. Each time a network device connects, it leases the IP address for an amount of time set 
by the DHCP server. Generally, the time is 24 hours, but it could be shorter or longer depending on 
how the DHCP server was configured. 

Typically, DHCP IP addressing is used for corporate networks. It is also commonly the default on 
home wireless routers that you use to connect your home computer to the internet. 

 

One of the benefits of DHCP is that a system administrator does not have to give you an IP address 
each time you want to connect something to the network. However, one of the drawbacks is that you 
do not know the IP address that may be assigned to your network device and it can change from 
connection to connection. While there are ways to configure DHCP servers to always give the same 
network device the same IP address each time, but that means a system administrator needs to be 
involved. 

 

Dynamic Link-local Addressing (DLLA) 

Also called Auto-IP, DLLA was originally used for ad-hoc networks. DLLA allows all the network 
devices to automatically allocate their own unique IP addresses. An Auto-IP address is in the range 
169.254.0.0 —169.254.255.255. A network device randomly picks an address in this range and 
sends out an ARP packet (on IPv4 only) to see if any other device is using it. If another device 
responds that it is using it, the network device generates another address and sees if it is in use and 
so on. 

 

Static or fixed IP address 

Static IP addressing means that the person setting up and configuring the network has assigned a 
fixed, unique IP address to each network device. This requires more rigorous enforcement to make 
sure everyone has a unique IP address but it has the added benefit that the address will not change. 

 

IPv4 address syntax and subnets 

For IPv4, the IP address is 32 bits wide and is divided into two main parts: a network ID number and 
a host ID number. The address is expressed as four decimal numbers separated by three periods. 
Valid addresses range from 0.0.0.0 to 255.255.255.255, for a total of about 4.3 billion unique 
addresses. Each of the four numbers represents the decimal value of the numbers’ 8-bit bytes. The 
way these four numbers are assigned for host ID and network ID depends on the class of network 
being used. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-46 707B-901-01 Rev. B / January 2015 

 

The network ID must be unique among all network subnets that connect to the Internet or corporate 
intranet. If the subnet will be connected to the public Internet, the network ID must be obtained from 
the Network Information Center, which assigns and preserves unique IDs. In any case, each host ID 
must be unique among all the hosts on the same network (which presumably has a unique network 
ID number). 

In the TCP/IP protocol, a subnet mask separates the network ID from the host ID. The subnet mask 
looks like an IP address, but sets a data bit high for each position of the IP address that makes up the 
network ID. Three different classes of network are defined with the IP address and subnet mask, as 
shown in the following table. 

 

 

Network classes defined by IP address and subnet mask combinations 

Network class IP address Subnet mask Available subnets Available hosts 

A nnn.hhh.hhh.hhh 255.0.0.0  126 16777214 
B nnn.nnn.hhh.hhh 255.255.0.0 16384 65534 
C nnn.nnn.nnn.hhh 255.255.255.0 2097151 254 

 

In the IP address format, "n" is a network ID position, and "h" is a host ID position. For simplicity, the 
first byte definition has been omitted from the table. 

Class C networks are the most common and use the subnet mask 255.255.255.0. The first three 
bytes are the network ID number and the last byte is the host ID on the network. Host ID numbers 1 
through 254 are available for assignment. All hosts on the same isolated network must have the 
same subnet mask. As a general rule, the top and bottom host numbers are reserved. The top one 
(nnn.nnn.nnn.255) is the broadcast address and the bottom one (nnn.nnn.nnn.0) is shorthand for the 
whole subnet. 

 

DNS 

The domain naming system (DNS) is a protocol that provides a way to associate a user-friendly name 
to an IP address. For example, while few people know the IP address of Google’s website, everyone 
knows www.google.com. When you enter this URL into an Internet browser, the DNS on the network 
looks up the URL and translates it to the IP address for the Google website. This is invisible to the 
user. 

For DNS to work, there must be a DNS server on the network and the correct IP address for that 
server must be configured in the computer. Some LAN instruments support DNS — if so, the IP 
address for the DNS server must be configured as well as the instrument IP address. Instruments, 
especially LXI instruments, also have to show a valid hostname on their LXI LAN Welcome and IP 
Configuration pages, and they need to use the DNS to validate that any hostname they display is 
valid. If they fail to validate a hostname, they must display the IP address for the instrument or a blank 
hostname in the hostname field on the web page. 

DNS requires a network administrator that can update the database in the DNS server with any host 
name and IP address combinations, so it is not usually suitable for instrumentation setups. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-47 

 

Dynamic DNS 

DNS is a rigid and inflexible system, because you must have a system administration add the DNS 
entry to the DNS server for it to work. Dynamic DNS tries to address this inflexibility. It addresses the 
needs of network devices that are powered up and down with IP addresses that can change several 
times a day. 

Dynamic DNS is generally used to refer to a system where there is a DHCP server on the network 
that allocates IP addresses to the network devices, and therefore there is a method to register a 
hostname with the DHCP server. The DHCP server assigns the IP address and tracks the hostnames 
at the same time. 

 

Multicast DNS 

Multicast DNS (mDNS) is a protocol that is more suitable than DNS for small localized ad-hoc 
networks. 

mDNS uses multicast packets for network devices to inform each other of their IP addresses, 
hostnames, and advertise what services might be available on that device. The packets are usually 
blocked from going any further than the nearest router. This limits the scope of mDNS, but multicast 
packets are more network-friendly than broadcast packets. For example, every network device in 
your subnet receives broadcast packets regardless of need, while for multicast packets, a network 
device must register for multicast addresses that will be received. 

Multicast packets have IPv4 addresses in the range 224.0.0.0 through 239.255.255.255. 
 

Windows network configuration settings 

The following topics describe how to change the LAN network settings for computers that run 
Microsoft Windows operating systems. 

 

Windows XP Internet Protocol (TCP/IP) Properties dialog box 

You can review and change IP settings in the Internet Protocol Properties dialog box. 
To open this dialog box in Windows XP: 
1. Click Start and select Settings, then Control Panel. 
2. Double-click Network Connections. 

 

3. Double-click Local Area Connection and click Properties. The Local Area Connection 
Properties dialog box is displayed. 

4. In the "This connections uses the following items" list, double-click Internet Protocol (TCP/IP). 
The Internet Protocol (TCP/IP) Properties dialog box is displayed. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-48 707B-901-01 Rev. B / January 2015 

 

Figure 38: Internet Protocol (TCP/IP) Properties dialog box 

 
 

Windows 2000 Internet Protocol (TCP/IP) Properties dialog box 

You can review and change IP settings in the Internet Protocol Properties dialog box. 
 

To open this dialog box in Windows 2000: 
1. Click Start and select Settings, then Control Panel. 
2. Open Network and Dial-up Connections. 
3. Right-click Local Area Connection and select Properties. The Local Area Connection 

Properties dialog box is displayed. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-49 

 

4. In the Items list, double-click Internet Protocol (TCP/IP). The Internet Protocol (TCP/IP) 
Properties dialog box is displayed. 

Figure 39: Internet Protocol (TCP/IP) Properties dialog box 

 
 

Windows Vista Internet Protocol Properties dialog box 

You can review and change IP settings in the Internet Protocol Properties dialog box. 
 

To open this dialog box in Windows Vista: 
1. Click Start and select Control Panel. 
2. Click Network and Internet. 
3. Open Network & Sharing Center. 
4. In the list, click View Status for the applicable connection. The Local Area Connection Status 

dialog box is displayed. 
5. Click Properties. A permissions message is displayed. 

 

6. If you are logged in as an administrator, click Continue. If you are not logged in as an 
administrator, enter the administrator's password to continue. 

7. The Network Connection Properties dialog box is displayed. 
8. Double-click Internet Protocol Version 4 (TCP/IPv4) in the items list. The Internet Protocol 

Properties dialog box is displayed. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-50 707B-901-01 Rev. B / January 2015 

 

Figure 40: Internet Protocol (TCP/IP) Properties dialog box 

 
 

Windows 7 Internet Protocol Version 6 (TCP/IPv6) Properties dialog box 

You can review and change IP settings in the Internet Protocol Version 4 (TCP/IPv4) dialog box. 
 

To open this dialog box in Windows 7:  
1. Click Start and select Control Panel. 
2. Click Network and Sharing Center. 

 

3. Click the Local Area Connection. The Local Area Connection Status dialog box is displayed. 
4. In the items list, double-click Internet Protocol Version 4 (TCP/IPv4) in the items list. The 

Internet Protocol Version 4 (TCP/IPv4) Properties dialog box is displayed. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-51 

 

Figure 41: Windows 7 Internet Protocol Version 6 dialog box 

 
 

Configure LAN settings through the front panel 
All instruments need to be configured before they can be used on a network. The main parameters 
that need to be configured for IPv4 are: 

• IP Addressing mode: Models 707B and 708B have a choice of Auto or Manual. Auto mode means the 
instrument will try to get and address through a DHCP server first and if this fails it will revert to Auto-IP 
mode. Manual is static IP addressing. 

• Subnet Mask. 
• Gateway. 
• DNS Server address if you are using DNS. 

Instruments with front panel displays and menus allow you to configure the instrument LAN settings 
through the front panel. 

 

Web connection 

You can enable or disable access to the instrument's web interface. 
To enable or disable a web connection: 
1. From the front panel, press the MENU key, and then select LAN > ENABLE > WEB. 
2. Select either ON or OFF. After the power cycle reminder, you return to the LAN CONFIG menu. 
3. Press the EXIT (LOCAL) key to return to the LAN MENU. 
4. Turn the instrument on and off again to finalize the changes. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-52 707B-901-01 Rev. B / January 2015 

 

Telnet connection 

The Telnet protocol is similar to raw socket, and can be used when you need to interact directly with 
the instrument. Telnet is often used for debugging and troubleshooting. You will need a separate 
Telnet program to use this protocol. 

The Models 707B and 708B supports the Telnet protocol, which you can use over a TCP/IP 
connection to send commands to the instrument. You can use a Telnet connection to interact with 
scripts or send real-time commands. 
To enable or disable a telnet connection: 
1. From the front panel, press the MENU key, and then select LAN > ENABLE > TELNET. 
2. Select either ON or OFF. After the power cycle reminder, you return to the LAN CONFIG menu. 
3. Press the EXIT (LOCAL) key to return to the LAN MENU. 
4. Turn the instrument on and off again to finalize the changes. 

 

VXI-11 connection 

This remote interface is similar to GPIB and supports message boundaries, serial poll, and service 
requests (SRQs). A VXI-11 driver or NI-VISATM software is required. Test Script Builder (TSB) uses 
NI-VISA and can be used with the VXI-11 interface. You can expect a slower connection with this 
protocol. 
To enable or disable a VXI-11 connection: 
1. From the front panel, press the MENU key, and then select LAN > ENABLE > VXI11. 
2. Select either ON or OFF. After the power cycle reminder, you return to the LAN CONFIG menu. 
3. Press the EXIT (LOCAL) key to return to the LAN MENU. 
4. Turn the instrument on and off again to finalize the changes. 

 

Raw socket connection 

Raw socket is a basic ethernet connection that communicates in a manner similar to RS-232 without 
explicit message boundaries. The instrument always terminates messages with a line feed, but 
because binary data may include bytes that resemble line-feed characters, it may be difficult to 
distinguish between data and line-feed characters. 

Use raw socket as an alternative to VXI-11. Raw socket offers a faster connection than VXI-11. 
However, raw socket does not support explicit message boundaries, serial poll, and service requests. 
To enable or disable a raw socket connection: 
1. From the front panel, press the MENU key, and then select LAN > ENABLE > RAW. 
2. Select either ON or OFF. After the power cycle reminder, you return to the LAN CONFIG menu. 
3. Press the EXIT (LOCAL) key to return to the LAN MENU. 
4. Turn the instrument on and off again to finalize the changes. 

 

Check the LAN network settings 
You can check the network settings for the instrument without making changes. 
To check the network settings: 
1. From the instrument front panel, select MENU > LAN > STATUS. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-53 

 

2. Use the navigation wheel to select the following network settings: 
 IP_ADDRESS: The IP address that the instrument is using to communicate over the LAN.  
 GATEWAY: The gateway address that the instrument is using to communicate over the LAN. 
 SUBNET: The subnet mask that the instrument is using to communicate over the LAN. 
 METHOD: Automatic or Manual. When this is automatic, the instrument assigns LAN settings 

automatically. When this is manual, you need to set the LAN settings. 
 DNS: The DNS information. 
 MAC-ADDRESS: The Media Access Control address of the network interface card. 
 SPEED: The instrument automatically detects the speed of the LAN and adjusts its own 

settings to match. 
 DUPLEX: The instrument automatically detects the duplex setting of the LAN and adjusts its 

own settings to match. 
 Port: RAW-SOCKET, TELNET, VXI-11, or DST. Select the port type to see the assigned port 

number. 
 Password: The current password. 

3. Press the ENTER key to view the setting. 
4. Press the EXIT key once to return to the STATUS menu. 

 

Set up automatic IP address selection 
If you are connecting to a LAN that has a DHCP server or if you have a direct connection between the 
instrument and a host computer, you can use automatic IP address selection. 

If you select Auto, the instrument attempts to get an IP address from a DHCP server. If this fails, it 
reverts to an IP address in the range of 169.254.1.0 through 169.254.254.255. 

Both the host computer and the instrument should be set to use automatic LAN configuration. 
Though it is possible to have one set to manual configuration, it is more complicated to set up. 

To set up automatic IP address selection: 
1. On the host computer, in the Internet Protocol Properties dialog box, select Obtain an IP 

address automatically. This enables DHCP mode. If this fails, the computer will automatically try 
Auto-IP addressing (DLLA). 

2. Click OK. Close the network settings dialog boxes. 
3. From the front panel of the instrument, press the MENU key. 
4. Use the navigation wheel to select LAN > CONFIG > METHOD. Press the navigation wheel to 

display the CONFIG menu. 
5. Select AUTO. Press the navigation wheel to select AUTO and return to the LAN CONFIG menu. 
6. Press the EXIT (LOCAL) key once to return to the LAN MENU. 
7. Select APPLY. Press the navigation wheel to apply the setting. The Main Menu is displayed. 

 

Set up instrument for manual LAN configuration 
After setting up your computer for connection to the instrument, you configure the instrument's LAN 
settings through the instrument front panel. Settings include the IP address, subnet mask, and the 
default gateway. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-54 707B-901-01 Rev. B / January 2015 

 

To set up the LAN on the instrument: 
1. From the front panel, press the MENU key. 
2. Use the navigation wheel to select LAN > CONFIG > METHOD. Press the navigation wheel  to 

display the METHOD menu. 
3. Select MANUAL. Press the navigation wheel  to select your choice and return to the LAN 

CONFIG menu. 
4. Select IP_ADDRESS. 

 

5. If you are: 
 Connecting directly to a host computer, refer to the recorded computer's IP address. Set the 

IP address to match the IP address of the host computer. Change the last three numbers 
(after the last decimal point) to a number that is unique on the LAN. The last three digits may 
be anything from 1 to 254 for a subnet mask of 255.255.255.0. 

 Connecting to a network: Enter the address provided by your system administrator. 
6. Record the instrument's IP address. 
7. Press the ENTER key when the IP address is complete. The LAN CONFIG menu is displayed. 

 

8. Select GATEWAY. 
9. Set the gateway value to match the gateway of the host computer. 
10. Press the ENTER key when the gateway is complete. The LAN CONFIG menu is displayed. 
11. Select SUBNET. 
12. Set the subnet value to match the settings of the host computer or use the value supplied by your 

system administrator. 
13. Press the ENTER key. The LAN CONFIG menu is displayed again. 
14. Press the EXIT (LOCAL) key once to return to the LAN menu. 
15. Select APPLY. Press the navigation wheel  to apply the change. The Main Menu is displayed. 

 

Change DNS settings 
On the instrument, you can enable or disable the DNS settings and assign a host name to the DNS 
server. 

When verify is enabled, the instrument performs a DNS lookup to verify that the DNS host name 
matches the value specified in the DNS server. 

When dynamic is enabled, DNS registration works with the DHCP server to register the host name 
specified with the DNS server. 

You can also define additional DNS addresses. 
 

To change DNS settings: 
1. From the front panel, press the MENU key, and then select LAN > CONFIG > DNS > VERIFY. 
2. Select either ENABLE or DISABLE. You return to the DNS menu. 
3. Select DYNAMIC. 
4. Select either ENABLE or DISABLE. You return to the DNS menu. 
5. To set an additional DNS addresses, select DNS-ADDRESS1 or DNS-ADDRESS2. 
6. Enter the address. 
7. Press the ENTER key. 
8. Press the EXIT key twice to return to the LAN MENU. 
9. Select APPLY. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-55 

 

Change the IP configuration through the web interface 
The LAN settings, such as IP address, subnet mask, gateway, and DNS address, can be changed 
through the web page of the instrument. 

If you change the IP address through the web page, the web page will try to redirect to the IP address 
that gets configured in the instrument. In some cases, this may fail. This generally happens if you 
switch from static IP address assignment to IP address assignment using a DHCP server. If this 
happens, you need to revert to either using the front panel to set the IP address or use an automatic 
discovery tool to determine the new IP address. 

 

You can also change the IP configuration using TSP commands. See LAN and LXI (on page 5-10) 
for more information. 

 

To change the IP configuration using the instrument web page: 
1. Access the instrument's internal web page (see Using the web interface (on page 2-66)). 
2. From the navigation bar on the left, in the LXI Home menu, select IP Config. 
3. Click Modify. 
4. You are prompted for a password. The default is admin. 

 

Figure 42: Modify IP Configuration page 

 
 

5. Change the values. 
6. Click Submit. The instrument reconfigures its settings, which may take a few moments. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-56 707B-901-01 Rev. B / January 2015 

 

You may lose your connection with the embedded web interface after clicking Submit. This is normal 
and does not indicate an error or failure of the operation. If this occurs, re-open the web page of the 
instrument to continue. 

 

Supplied software 
The majority of software applications and all instrument drivers from Keithley Instruments depend on 
some, or all, of the following software components: 

• NI-VISATM 
• VISA shared components 
• IVI shared components 
• NITM CVITM runtime engine 
• NITM IVITM compliance package 

Keithley instrument driverThese software components are included on the CD-ROMs that came with 
your instrument, and are also available for download at the Keithley Instruments support website 
(http://www.keithley.com/support). 

 

VISA 
The Virtual Instrument Software Architecture (VISA) is a standards body that maintains the 
specifications for a whole series of software components related to instrument connectivity (I/O). The 
VISA specifications, formerly maintained by the VXIplug&play Systems Alliance, are now being 
maintained by the IVI Foundation (http://www.ivifoundation.org). 

The VISA library (standard VPP-4.3) is a standard for an API to communicate with instruments 
connected to the computer communication buses: Ethernet, USB, RS-232, GPIB, and so on. VPP-4.3 
is a software API standard — several instrument vendors have implementations of VPP-4.3, including 
National Instruments, Agilent Technologies, and Tektronix. 

 

There are three types of programming interfaces to VISA: VISA-C, VISA-COM and VISA .NET. 

• VISA-C is a DLL that has a flat API. The five main message-based functions are viOpenDFLT, viOpen, 
viWrite, viRead and viClose. 

• VISA-COM is an ActiveX type interface to VISA that is more suited for the VB6 and .NET environments. 
• VISA.NET is a .NET interface for VISA that the IVI Foundation is currently (July 2010) standardizing on. 

 

VISA shared components 
The IVI Foundation provides the VISA shared components, which contain the VISA-COM 
components that VISA vendors install with their VISA installations. There are separate entries in the 
Add/Remove Programs dialog box for the VISA shared components and the vendor’s VISA. 

 

http://www.keithley.com/support
http://www.ivifoundation.org/


Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-57 

 

IVI shared components 
The IVI shared components are a similar concept to the VISA shared components. The IVI 
Foundation provides class drivers for: 

• All the supported instruments (DMM, Scope, Fgen, and so on) 
• The configuration store 

The IVI shared components also create the installation folders and registry keys that all IVI drivers 
and support files use for installation. 

 

NI CVI runtime engine 
IVI-C drivers that are created using National Instruments (NITM) LabWindows/CVI environment 
depend on either the CVI runtime (cvirte.dll), or the instrument support run-time (instrsup.dll), and 
must be present on the system for them to run. 

 

NI IVI Compliance Package 
The National Instruments (NITM) IVI Compliance Package is a software package that contains IVI 
class drivers and support libraries that are needed for the development and use of applications that 
leverage IVI instrument interchangeability. The IVI Compliance Package also is based on and is 
compliant with the latest version of the instrument programming specifications defined by the IVI 
Foundation. 

The NI ICP installer installs the IVI shared components, CVI runtime engine, and the instrument 
support runtime engine. 

 

Keithley SCPI-based instrument driver 
The Keithley SCPI-based Instrument IVI-C Driver is used to support the Keithley Configuration Panel 
Wizard and Keithley Communicator functionality. It contains simple functions for opening, configuring, 
taking measurements from, and closing the instrument. 

 

Keithley I/O layer 
The Keithley I/O Layer (KIOL) is a software package that contains several utilities and drivers. It is 
mainly used as a supplement to IVI drivers, or application software like Test Script Builder (TSB). 

The KIOL contains: 

• NI-VISATM Runtime-Time Engine 
• Keithley Configuration Panel 
• Keithley Communicator 

 

NI-VISA Runtime 
NI-VISATM is National Instruments (NITM) implementation of the VISA standard. There are two 
versions. The full version contains diagnostic and configuration tools such as NI-Spy and NI-MAX and 
the binary run-time-only files. The run-time version contains only the binary files (DLLs) that allow the 
drivers to operate. 

The Keithley I/O Layer (KIOL) contains a licensed version of the NI-VISA runtime. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-58 707B-901-01 Rev. B / January 2015 

 

If you already have NI software (such as LabVIEW or LabWindows) installed, you have a valid license 
that can be used with Keithley drivers and application software. 

If you do not have NI software installed, to use Keithley drivers or application software, you must 
install the KIOL. This installs a valid, licensed copy of the NI-VISA runtime to use with Keithley drivers 
or application software. KIOL installs a valid license for the NI-VISA Run-Time Engine only (not the 
full version of NI-VISA). 

 

Keithley Configuration Panel 
The Keithley Configuration Panel is a configuration utility for IVI drivers, similar to NI-MAX. It also has 
the ability to autodetect USBTMC instruments and LAN instruments that support the VXI-11 protocol. 

 

Keithley Communicator 
The Keithley Communicator is a dumb terminal program that uses VISA to communicate with the 
instrument. 

 

Computer requirements for the Keithley I/O Layer 
The Keithley I/O Layer version C02 supports the following operating systems: 

• Microsoft® Windows® (32-bit & 64-bit) Business with Service Pack 1 or later 
• Microsoft Windows Vista® Business (32-bit & 64-bit) with Service Pack 2 or later 
• Windows XP Professional (32-bit) with Service Pack 3 or later 
• Windows 2000 Professional with Service Pack 4 plus update KB891861 or later 

Note that Windows 95, Windows 98, Windows ME, Windows NT, Windows XP (64-bit) operating 
systems are not supported. 

 

How to uninstall previous versions of the Keithley I/O Layer 
If you have an earlier version of the Keithley I/O Layer software installed on your computer, you must 
uninstall it. 
To uninstall the Keithley I/O layer: 
1. From the Control Panel, select Add/Remove Programs. 

 

2. Uninstall the following components: 
 Keithley I/O Layer 
 Keithley I/O Layer Suite 
 Keithley SCPI-based Instrument IVI-C Driver 
 NI-VISA Run-Time Engine x.x.x (if present) (x.x.x is the VISA version) 

3. Reboot your computer. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-59 

 

How to install the Keithley I/O Layer 

Before installing, it is a good idea to check the Keithley Instruments website 
(http://www.keithley.com) to see if a later version of the Keithley I/O Layer is available. On the 
website, select the Support tab, under model number, type KIOL, and select Software Driver. 

You can install the Keithley I/O Layer from the CD-ROM that came with your instrument, or from the 
download from the Keithley website. 

The software installs the following components: 

• Microsoft® .NET Framework 
• NITM IVI Compliance Package 
• NI-VISATM Run-Time Engine 
• Keithley SCPI-based Instrument IVI-C driver 
• Keithley I/O Layer 

 

To install the Keithley I/O Layer from the CD-ROM: 
1. Close all programs. 
2. Place the CD-ROM into your CD-ROM drive. 
3. Your web browser should start automatically and display a screen with software installation links. 

If you need to manually open the web page, use a file explorer to navigate to the CD-ROM drive 
and open the file named index.html. 

4. From the web page, select the Software category and click Keithley I/O Layer. 
5. Accept all defaults. 
6. Click Next. 
7. Click Install. 
8. Turn your computer off and then on again to complete the installation. 

 

To install the Keithley I/O Layer from the Keithley website: 
1. Download the Keithley I/O Layer Software from the Keithley Instruments website 

(http://www.keithley.com) as described in the note. The software is a single compressed file and 
should be downloaded to a temporary directory. 

2. Run the downloaded file from the temporary directory. 
3. Follow the instructions on the screen to install the software. 
4. Reboot your computer. 

 

Special installation considerations 
Situations may occur during installation that cannot be handled automatically by the installation utility. 
The installation utility will warn you if one of these situations is detected. The sections below describe 
the action you must take before the installation can be completed. 

 

http://www.keithley.com/
http://www.keithley.com/


Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-60 707B-901-01 Rev. B / January 2015 

 

Mismatch between IVI Shared Components and IVI Engine Detected 

The IVI Shared Components and IVI Engine are software components that may be installed by 
various test and measurement software applications, instrument drivers, and so on. Keithley I/O 
Layer software requires that these components, if present, be compatible versions. The installation 
utility will detect a mismatch, which must be corrected before the software installation can proceed. If 
this situation is detected, the Keithley I/O Layer software installation will automatically stop. 

The recommended way to resolve this situation is to install the IVI Compliance Package (ICP) 
software from National Instruments (NITM). You may download the ICP software and release notes 
from National Instrument’s website. When the ICP installation is complete, restart the Keithley I/O 
Layer software installation. 

 

Non-National Instruments VISA detected 

VISA software is used to communicate with the instrument and may be installed by various test and 
measurement software applications, instrument drivers, and so on. Keithley I/O Layer software 
requires and will install National Instruments NI-VISATM software. The installer will detect if another 
vendor’s version of VISA is already installed on the computer. If this occurs, the installer will pause 
and display a warning message. The warning message displays the vendor of the detected VISA in 
its title bar, if this can be determined. Make a note of the vendor name. At this point, you may elect to 
continue the installation, which will overwrite the existing VISA installation with NI-VISA. This will 
allow the Keithley I/O Layer software to operate properly, but may cause other applications or 
instrument drivers that were dependent on the existing VISA to malfunction. 

 

The recommended way to resolve this situation is to perform the following steps: 
1. Exit the Keithley I/O Layer software when the warning message is displayed. Make note of the 

VISA vendor in the warning message (if any). 
2. Uninstall the non-NI VISA software. 
3. Uninstall Tektronix VISA by selecting OpenChoice TekVISA from the Control Panel Add/Remove 

programs list. 
4. Uninstall Agilent VISA by selecting Agilent I/O Libraries Suite from the Control Panel 

Add/Remove programs wizard list. 
 

5. Uninstall other versions of VISA by selecting the appropriate entry from the Control Panel 
Add/Remove Programs Wizard list. 

6. Restart the Keithley I/O Layer software installation. 
7. If the pre-existing version of VISA was supplied by Tektronix or Agilent (as displayed in the 

warning message), you may safely reinstall that version of VISA once Keithley I/O Layer software 
installation is complete. When you reinstall Tektronix or Agilent VISA, it may prompt you to 
preserve the current VISA version, which you should do. This will usually restore the operation of 
any dependent applications or drivers. 

8. If the pre-existing version of VISA was supplied by a vendor other than Tektronix or Agilent, we 
recommend that you do not reinstall it, because this will likely cause the Keithley I/O Layer 
software to malfunction. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-61 

 

Installation troubleshooting 
If problems occur during installation, it might be helpful to install the components individually. Errors 
messages might appear that will help you resolve the installation issue. 

If problems occur during installation: 

1. Rerun the KIOL installer. Note where the installer unpacks the files (usually in a temporary 
folder). 

2. Cancel the installer. 
3. Go to the folder where the files were unzipped. 

 

4. Run the setup.exe for each of the following components in the following order: 
 IVI Compliance Package (ICP) 
 NI-VISATM Run-Time Engine 
 KIOL 
 Keithley SCPI Driver 

5. Ignore all the other folders. 
6. Reboot the computer. 

 

Modifying, repairing, or removing Keithley I/O Layer software 
The Keithley I/O Layer interconnects many other installers. 

To remove all the KIOL components, you need to uninstall the following applications using Control 
Panel: 

• National Instruments NITM IVI Compliance Package 
• National Instruments NI-VISATM Run-Time Engine 
• IVI Shared Components 
• Visa Shared Components 
• Keithley SCPI Driver 

After uninstalling components, reboot the computer. 
 

Addressing instruments with VISA 
VISA allows you to communicate with the instrument on different communication buses by changing a 
resource string that gets passed in with the viOpen function, in VISA-C, or with the Open method on 
the VISA-COM resource manager object. 

 

For detailed information about the format of the resource string, refer to the VISA specification 
VPP4.3 at the IVI Foundation website, or refer to the help file provided by the vendor of the VISA 
implementation you are using. 

The following sections describe the resource strings for some of the communication types that 
Keithley supports. Any field that has [] (square brackets) around it is optional and will revert to a 
default value. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-62 707B-901-01 Rev. B / January 2015 

 

Addressing instruments through the LAN 
VISA supports two different LAN protocols, each of which has a different resource string. 

VXI-11 is a protocol that emulates GPIB over the LAN. Models 707B and 708B supports this protocol. 
The resource string is: 
TCPIP[board]::host address[::LAN device name][::INSTR] 

 

board is the network interface card in the computer. This value is usually skipped and VISA 
determines the correct network interface card (if you have more than one) by looking at the IP 
address. 

host address can be either a valid DNS hostname, mDNS hostname, or the IPv4 IP (only) address 
of the instrument. 

LAN device name is a method of addressing secondary instruments at the main IP address, similar 
to secondary addressing on the GPIB bus. The default is inst0. 

A raw socket connection requires more work by the driver or application program to make sure the 
correct amount of data has been sent or received correctly. All Keithley instruments support the raw 
socket connection. 
TCPIP[board]::host address::port::SOCKET 

 

The board and the host address are the same as for the VXI-11 protocol. 

port is the port to which to connect on the instrument. For the Models 707B and 708B, the port is 
5025. See Instrument LAN protocols (on page 2-39) for a complete list of port numbers. 

 

Addressing instruments using USB 
USB[board]::manufacturer ID::model code::serial number[::USB interface 

number][::INSTR] 

board is not used (0). 

manufacturer ID is the USB.org reserved four-digit hexadecimal code for the instrument vendor 
company. Keithley Instruments hexadecimal code is 05E6. 

model code is the model number of the instrument. For example, when addressing a Model 707B, 
use 707B. 

serial number is the serial number of the instrument. 

USB interface number identifies which USBTMC interface on the instrument to address 
(usually 0). 

 

Also see USB VISA identifiers (on page 2-30). 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-63 

 

Addressing instruments through GPIB 
There are two different resource classes in VISA for the GPIB bus. 

INSTR is the basic class that everyone uses. It allows application software to send and receive data 
and commands without dealing with some low level GPIB nuances. This class is recommended for 
typical GPIB communication.  

The INTFC class allows finer control over the GPIB controller card in the computer. You must comply 
with the IEEE-488.1 protocol and tell the instrument to listen and the controller to talk before sending 
a message to the instrument. This class allows you to communicate to the instrument using low-level 
GPIB commands. Refer to your VISA documentation for more details on how to use this class.  

The GPIB INSTR resource class format is: 
GPIB[board]::primary address[::secondary address][::INSTR] 

board is the number of the GPIB card, if there are more than one in the computer. If there is only one 
GPIB card, don not include board, but do not leave a space. 

primary address is the main GPIB address of the instrument, which can be changed, if 
necessary, through the front panel of the instrument. 

secondary address is for secondary addressing in GPIB. Some instruments have subinstruments 
or cards inside the main instrument or backplane. The primary address identifies the main instrument. 
The secondary address identifies subinstruments. Refer to the instrument user manual for the 
secondary address, if applicable. 

 

Sending raw commands to an instrument 
The next sections show you how to use VISA-C and VISA-COM to send raw instrument commands 
without using the instrument drivers. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-64 707B-901-01 Rev. B / January 2015 

 

VISA-C sample code 

The following is a simple C/C++ console application that reads back the instrument identification 
string using VISA-C. You need to include visa.h and link with the visa32.lib file. 
#include "stdafx.h" 
#include <visa.h> 
 
#define checkErr(fCall)      if (error = (fCall), (error = (error < 
    0) ? error : VI_SUCCESS)) \ 
                                 {goto Error;}  else error = error 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
      ViSession defaultRM, vi; 
      char buf [256] = {0}; 
      ViStatus  error = VI_SUCCESS; 
 
      /* Open session to GPIB device at address 22 */ 
      checkErr(viOpenDefaultRM(&defaultRM)); 
      checkErr(viOpen(defaultRM, "GPIB0::14::INSTR", VI_NULL,VI_NULL, &vi)); 
 
      /* Initialize device */ 
      checkErr(viPrintf(vi, "*RST\n")); 
 
      /* Send an *IDN? string to the device */ 
      checkErr(viPrintf(vi, "*IDN?\n")); 
      ViUInt16 status = 0; 
      do 
      { 
      checkErr(viReadSTB(vi, &status)); 
      printf("ReadSTB = %X\n", status); 
      } while(status == 0); 
 
      /* Read results */ 
      checkErr(viScanf(vi, "%t", &buf)); 
      /* Print results */ 
      printf ("Instrument identification string: %s\n", buf); 
 
      /* Close session */ 
      checkErr(viClose(vi)); 
      checkErr(viClose(defaultRM)); 
 
Error: 
 
      if(error < VI_SUCCESS) 
         printf("Visa Error Code: %X\n", error); 
      printf("\nDone - Press Enter to Exit"); 
   getchar(); 
 
      return 0; 
} 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-65 

 

 
 

VISA-COM sample code 

This example gets the instrument identification string using VISA-COM in C#. 
 

The first thing to do is add a reference to the VISA-COM interop DLL, which is usually located at 
C:\Program Files\IVI Foundation\VISA\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.dll. 
using Ivi.Visa.Interop; 
 
namespace WindowsApplication1 
{ 
 
      public class IdnSample: System.Windows.Forms.Form 
      { 
private Ivi.Visa.Interop.FormattedIO488 ioDmm; 
      // 
   } 
   } 
      private void IdnSample_Load(object sender, System.EventArgs e) 
      { 
         ioDmm = new FormattedIO488Class(); 
 
         SetAccessForClosed(); 
      } 
 
      private void btnInitIO_Click(object sender, System.EventArgs e) 
      { 
 
       try 
          { 
         ResourceManager grm = new ResourceManager(); 
               ioDmm.IO = (IMessage)grm.Open("GPIB::16::INSTR", 
                  AccessMode.NO_LOCK, 2000, ""); 
               ioDmm.IO.TerminationCharacterEnabled = true; 
 
          } 
          catch (SystemException ex) 
          { 
               MessageBox.Show("Open failed on " + this.txtAddress.Text + " " + 

ex.Source + "  " + ex.Message, "IdnSample", MessageBoxButtons.OK, 
MessageBoxIcon.Error); 

               ioDmm.IO = null; 
          } 
      } 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-66 707B-901-01 Rev. B / January 2015 

 

 
 

Using the web interface 
 

 

Introduction 
The Model 707B or 708B web interface can be used with your choice of web browsers, including 
Microsoft® Internet Explorer®, Mozilla® Firefox®, Google ChromeTM, and Apple® Safari®. Using the web 
interface, you can review instrument status, control the instrument, and upgrade the instrument over a 
LAN connection.  

The instrument web page resides in the firmware of the instrument. Changes you make through the 
web interface are immediately made in the instrument. 

All examples in this manual can be run through the TSB Embedded (on page 2-75) web application 
that is available on the instrument web interface. 

 

Connect to the instrument web interface 
To connect to the instrument web interface, you must have an LAN connection from the computer to 
the instrument. 

The web interface requires the web browser plug-in Sun JavaTM Runtime Environment Version 6 or 
higher. Installation files are available from http://www.java.com/en/download/manual.jsp 
(http://www.java.com/en/download/manual.jsp). 

The ActiveX control and Java applets are installed from the instrument but, depending on the browser 
security settings, they may require the users permission to be downloaded and installed. 
After the instrument is connected and Java is installed, to connect to the instrument: 
1. Open an internet browser, such as Windows Internet Explorer (v6.0 or higher only). 
2. In the Address box, enter the IP address of the instrument (to find the IP address, from the front 

panel of the instrument, select MENU > LAN > STATUS > IP-ADDRESS). 

The Home page of the instrument web interface is displayed. 
 

Web interface home page 
The home page of the web interface gives you basic information about the instrument, including: 

• The instrument model, serial number, firmware revision, and LXI information 
• A list of slots and the switch cards that are installed in each slot 
• An ID button to help you locate the instrument 
• Links to the instrument web options, including TSB Embedded. 

 

http://www.java.com/en/download/manual.jsp


Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-67 

 

Identify the instrument 
If you have a bank of instruments, you can click the ID button to determine which one you are 
communicating with. 
To identify the instrument: 

In the middle of the left side of the Home page, click the ID button. 

The button turns green and the LAN status indicator on the instrument blinks. 

Click the ID button again to return the button to its original color and return the LAN status indicator to 
steady on. 

 

Log in to the instrument 
The web interface has both interactive and read-only pages. These pages are always listed in the 
navigation panel on the left side of the web interface. You can review information on any of the pages 
without logging in, but to change information, you must log in. 

Pages that contain information you can change include a Login button. Once you have logged in to 
one page of the web interface, you do not need to log in again unless you reload the page. 

 

To log into the instrument: 
1. Open a page that contains a Login button, such as one of the Cards pages, Scan Builder, or TSB 

Embedded. 

Figure 43: Web interface login 

 
 

2. Click Login. The login dialog box is displayed. 
3. Enter the password (the default is admin). 

Figure 44: 3700A Enter web interface password 

 
 

4. Click Login. 
 

The default password is admin. If the password has been changed, it is available from the front 
panel of the instrument. Press MENU > LAN > STATUS > PASSWORD. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-68 707B-901-01 Rev. B / January 2015 

 

Card pages 
The card pages are interactive pages where you can work with channels in each slot. 

To open a card page, on the left navigation, click the slot number. 
 

There is a specific page for each card installed in the mainframe. The page displays a grid that shows 
the relay configuration of the switch card. 

 

Figure 45: Web interface Cards page 

 
 

Open and close slots from the card pages 
You can open and close channels from the card pages in several ways. 

 

The simplest method is to click a connection. The channel changes state to open or closed. When the 
channel is open, the connection will look similar to one of the following graphics (the actual item on 
the web interface depends on the installed card): 

Figure 46: Web interface open channel 

 
 

Figure 47: Web interface relay open 

 

When the channel is closed, the connection will look similar to one of the following: 

Figure 48: Web interface closed channel 

 

Figure 49: Web interface relay closed 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-69 

 

To specify the type of close, select a Channel Action Type from the box in the upper right before 
closing a channel. The options are: 

• Channel Close: Close the selected channel without affecting the state of any other channels. 
• Exclusive Slot Close: Close the selected channel and open any closed channels in the same 

slot. 
• Exclusive Close: Close the selected channel and open any closed channels in the instrument 

(the only closed channel is the selected channel).  

You can open all channels in a slot by clicking Open Slot. 

You can open all channels in the instrument by clicking Open All. 

For more information on opening and closing channels, see Working with channels (on page 2-80). 
 
 

Configure channels from the web interface 
To configure channels from the web interface, right-click the channel. The Channel Configuration 
dialog box is displayed. 

Figure 50: Channel configuration dialog box 

 
 

In this dialog box, you can set: 

• Label: The label for the channel. This is the same as the command channel.setlabel(). 

• Forbidden: Select this box to set the channel to forbidden. This prevents the channel from being 
closed from any interface. Note that if the channel is used in a channel pattern, the pattern is 
deleted when you set the channel to forbidden to close. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-70 707B-901-01 Rev. B / January 2015 

 

• Delay Time: The additional delay to incur after the relay settles when closing the channel. Enter 
the value for the delay in seconds. The total delay for channel close is this delay plus the relay 
settling time. 

This dialog box also displays the closure count. See Determining the number of relay closures (on 
page 2-85) for information. 

 
 

Set up channel patterns from the web interface 
You can use channel patterns as a convenient way to refer to a group of switching channels with a 
single alphanumeric name. When you perform close or open operations on a channel pattern, only 
the channels that are in the channel pattern are affected. 

There is no speed difference when performing close and open operations on channel patterns 
compared to performing the same operations on individual channels or a list of channels. 

 

To create a channel pattern from the web interface: 
1. From the left navigation, click a slot. 

Click Pattern (above the Channel Action Type box). The Channel Pattern Configuration dialog 
box is displayed. 

Figure 51: Channel pattern configuration dialog box 

 

2. Enter a name in the box at the top. 
3. From the Channels Available list, select the channels you want to add. You can use Ctrl+click and 

Shift+click to select multiple channels. 
4. Click Add. You can add as many channels as needed. 
5. Click Create. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-71 

 

To create a channel pattern from the web interface using the Snapshot feature: 
1. Close the channels that you want to include in the pattern. 
2. Click Pattern (above the Channel Action Type box). The Channel Pattern Configuration dialog 

box is displayed. 
3. Enter a name in the box at the top. 
4. Click Snapshot. A new pattern is created that contains the closed channels. 

 

To delete a channel pattern from the web interface: 
1. Select the name of the pattern that you want to delete. 
2. Click Delete. 

For more information regarding patterns, including opening and closing the channels that are in 
patterns, see Channel patterns (on page 2-92). 

 

Reset a slot from the web interface 
You can reset all the relays in the displayed slot by clicking Reset Slot. 

When you reset the relays in a slot: 

• Any closed channels open 
• Labels return to default of slot, row, column 
• Delays are set to zero 
• If the channel is forbidden to close, it is cleared from being forbidden to close 
• If any of the slot’s channels are in channel patterns, the patterns are deleted 

The rest of the instrument settings are unaffected. 
 

Scan Builder page 
The Scan Builder page allows you to set up and run scans and triggers. 

A scan is a series of steps that opens and closes switches sequentially for a selected group of 
channels. During each step, actions occur, such as waiting for a trigger, taking a measurement on an 
external instrument, and completing a step count. Scans automate actions that you want to perform 
consistently and repeatedly on a set of channels. 

Triggers are events that prompt the instrument to move from one step to another in a scan. Triggers 
can come from a variety of sources, such as a key press, digital input, or expiration of a timer. The 
sequence of actions and events that occur during the scan is called the trigger model, described in 
Trigger model (on page 3-1). 

 

Scanning and triggering allow you to synchronize actions across channels. You can set up a scan 
using the trigger model to precisely time and synchronize the Model 707B or 708B between channels 
and multiple instruments. You can also use triggers without the triggering model to set up a scan to 
meet the needs of a specific application that does not fit the triggering model. 

 

If you use Scan Builder to create a scan, use the options in the Scan Builder page to run the scan. 
Using the TSB Embedded page may not give you the expected results. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-72 707B-901-01 Rev. B / January 2015 

 

Create a scan list 
Before you can run a scan, you must create a scan list. A scan list is a set of steps that runs in order 
during a scan. Each step contains a channel, channels, or channel patterns that you want to measure 
in that step. Each step is acted on separately during the scan. 

You can mix channel patterns and individual channels in a scan list. Note that the steps are executed 
in the order in which they are added to the scan. 

 

Before setting up a scan list, make sure your channels and channel patterns are configured. See 
Working with channels (on page 2-80) for detail. 

If you change the channel configurations or channel patterns after the scan list has been set up, you 
may not see expected results. If the change prevents the scan from functioning properly (such as 
deleting something referenced by the scan), an error message is logged. 

 

To create a scan list from the web interface: 
1. From the left navigation of the web interface Home page, select Scan Builder. 
2. In the Add Channel By list on the right, select Number to add the channels individually or Pattern 

to select patterns. You can include both channels and patterns in the same scan list. 
3. If you selected Number, select the channel numbers from the list. To remove your selections 

from the Add Channel By list, click Clear Channel Selection. You can use Ctrl+click to select 
multiple channels and Shift+click to select a range of channels.  

4. If you selected Pattern, select a pattern from the Channel Pattern list. 
5. Click Add Step. The channels and patterns are added to the Steps list. 
6. In the Scan Count box, enter the number of times you want to repeat the steps in the scan. 
7. Repeat these steps as needed to build the scan steps. The scan is saved as you build it. 

 

Clear the scan list from the web interface 
Clearing the scan list deletes all channels and channel patterns from the scan list. 
To clear the scan list from the web interface: 
1. From the left navigation area of the web interface home page, select Scan Builder. 
2. Click Scan Clear. 

 

Review the scan list 
You can review the existing scan list to see which channels and channel patterns are listed, and in 
which order. 
To review the scan list from the web interface: 
1. From the left navigation of the web interface Home page, select Scan Builder. 
2. Select the Build & Run tab. The scan list is shown in the Steps box. 

 

Reset the scan list 
You can clear the scan list and return scan settings to their factory defaults using scan reset. A scan 
reset does not affect any settings in the instrument except the scan list and trigger model. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-73 

 

The settings that are affected are: 

• Channels and patterns are removed from the scan list 
• Bypass: Returned to default setting of ON 
• Mode: Returned to default setting of Open All 
• Scan count: Returned to default setting of 1 
• Trigger to start scan: Set to Immediate 
• Trigger to continue channel action for each scan step: Setting is cleared 
• Arm (Scan Start Stimulus) is set to None 
• Channel Action Stimulus is set to Channel Ready Event 
• Channel Ready Event is set to None 
• Scan Complete Even is set to None 

 

To reset the scan list from the web interface: 
1. From the left navigation of the web interface Home page, select Scan Builder. 
2. Click Scan & Trigger Reset. 

 

Run the scan 
You can run a scan in one of several ways: 

• Background: Runs the scan in the background so that you can perform other tasks while the scan is 
running. You can use the Query State to check scan status. 

• Step by Step: Steps through the scan. 
 

To run the scan as a background scan from the web interface: 

Click Execute Background or Step by Step. 
 

Stop the scan 
To stop the scan from the web interface: 

On the Build & Run tab, click Abort. 
 

Monitor the state of the scan 
To monitor the state of the scan, you can click Query State on the Build & Run tab. Query State 
displays the current state of the scan, which can be:  

• Empty: No scan defined  
• Building: Scan list is being created 
• Running: Scan in process  
• Success: Scan completed successfully 

 

Set up simple triggers 
You can set up triggers to control your scan using the options on the Simple Trigger tab. You can set: 

• The event that starts the scan 
• The time interval event that controls the channel action for each step of the scan 

To see these options, click the Simple Trigger tab from the top of the Scan Builder page. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-74 707B-901-01 Rev. B / January 2015 

 

Trigger to start scan 

You can choose the triggers that will be used to start the scan. The options to start the scan are: 

Immediate: When Immediate is selected, the scan starts as soon as you click Execute Background 
on the Build & Run tab. Select Immediate when you do not have trigger requirements to start the 
scan. This is the default selection. 

Digital Input: When selected, you select a digital line (1 to 14) that is used to start a scan. You can 
select falling or rising for the digital input. Falling selects the falling edge trigger. Rising selects the 
rising edge of the trigger. 

 

If Other is displayed in the mode list, a different mode (other than falling or rising) is already selected. 
Other is not a mode and cannot be selected. It is only an indicator that the digital triggering is already 
set up for a different mode.  See Advanced triggering (on page 2-74) for other options. 

 

Channel action trigger 

You can select the trigger to use to continue channel action for each scan. The options to continue 
channel action are: 

Immediate: When immediate is selected, the scan immediately steps to the next channel in the scan 
list. This is the default setting. 

Digital Input: When selected, you select a digital line (1 to 14) that is used to trigger the instrument to 
step to the next channel. You can select falling or rising for the digital input. Falling selects the falling 
edge trigger. Rising selects the rising edge of the trigger. 

If Other is displayed in the mode list, a different mode (other than falling or rising) is already selected. 
Other is not a mode and cannot be selected. It is only an indicator that the digital triggering is already 
set up for a different mode. See Advanced triggering (on page 2-74) for other options. 

Every N seconds: This parameter adds a fixed delay between each channel. The delay occurs 
before the next channel in the scan list is closed. 

 

Advanced triggering 
The Advanced Trigger tab of the Scan Builder allows you to set the options that are available from the 
Simple Trigger tab, as well as more sophisticated options to control scan triggering. 

The Advanced Trigger tab uses the trigger model flowchart to help you visualize and define the input 
and output triggers to the scan. 

For more information on the trigger model, see Trigger model (on page 3-1). 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-75 

 

The options on the Advanced Trigger tab include: 

• Mode: Select Open All to open all slots before the scan starts. Select Open Selective to open only 
channels that are involved in scanning; closed channels that are not involved in scanning remain 
closed. Select Fixed ABR to open all channels involved in the scan, but close all required backplane 
relays before the scan. 

• Arm (Scan Start) Stimulus: Select the event that causes the arm event detector trigger to be set to the 
detected state (the scan can begin). 

• Channel Action Stimulus: Select the event that causes the channel event detector to be set to the 
detected state (the step can begin). 

• Channel Ready Event To: Select the recipient of the Channel Ready Event. 
• Scan Complete Event To: Select the recipient of the Scan Complete Event. 

 

There is also a Config button available for each of the options except Mode. When you click this 
button, a dialog box with additional options for the selection is displayed.  

 

Set the scan mode 

The scan mode determines how channels are opened before the start of the scan. 

You can select: 

• Open all: All slots are opened. 
• Open select: All channels selected in the scan list are opened; any closed channels remain closed if 

they are not in the scan list. 
• Fixed ABR: All necessary backplane relays are closed before the scan. 

 

To set the scan mode from the web interface: 
1. Select the Advanced Trigger tab. 
2. Select Mode. 
3. Select Open All or Open Selective. 

 

TSB Embedded 
TSB Embedded is an application that includes a command line interface that you can use to issue 
ICL commands. It also offers script-building functionality. TSB Embedded resides in the instrument. 

Script management options 

Existing scripts are listed in the User Scripts box on the left side of TSB Embedded. 

To run a script, click the name of the script and then click Run. 

To delete a script, click the name of the script and click Delete. The script is deleted from the User 
Scripts list and from the nonvolatile memory of the instrument. 

To stop operation of a script, click Abort Script. 
 

To export the selected script to the computer, click Export to PC. Choose the directory in which to 
save the script and click Save. Scripts are saved to a file with the extension tsp. TSP files are native 
to Test Script Builder or TSB Embedded, but they can be opened and edited in any text editor. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-76 707B-901-01 Rev. B / January 2015 

 

To import scripts from the computer, click Import from PC. Select the directory that contains the file. 
You can only import files with the extension tsp. 

To clear the name box and the box that contains the script, click Clear. 

To view the contents of a script, type the name of a script in the TSP Script box and click View 
Script. 

To create a script, see Create a script using TSB Embedded (on page 2-76). 

Command line interface 

Console: Enter command line entries here to send commands to the instrument. Click Enter to send 
the command. The commands and output are shown in the Instrument Output box. 

 

To resend a command, click the button at the left of the Console box.  

Figure 52: Web interface console 

 

Instrument control 

To reset the entire TSP-enabled system, including the controlling node and all subordinate nodes, 
click Reset. 

 

Create a script using TSB Embedded 

If you are using TSB Embedded to create scripts, you do not need to use the commands 
loadscript or loadandrunscript and endscript. 

 

You can create a script from the instrument web page with TSB Embedded. When you save the script 
in TSB Embedded, it is loaded into the run-time environment and saved in the nonvolatile memory of 
the instrument. For information about using TSB Embedded, select the Help button on a web page or 
the Help option from the navigation pane on the left side of the web interface. 

 

To create a script using TSB Embedded: 
1. In the TSP Script box, enter a name for the script. 
2. In the input area, enter the sequence of commands to be included in the script. 
3. Click Save Script. The name is added to the User Scripts list on the left. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-77 

 

Admin page 
Through the Admin page, you can change the instrument password and the instrument time. 

 

Change the password 
To change the password for the web interface: 
1. In the web interface, from the left navigation, click Admin. A login page is displayed. 
2. Enter the current password in the Password box. (The default is "admin".) 
3. Click Login. The Administration page is displayed. 
4. In the Current Password box, enter the current password. 
5. In the New Password box, enter the new password. 
6. In the Confirm New Password box, enter the new password again. 
7. Click Submit. The new password takes effect immediately. 

 

Change the instrument date and time 
To change the date and time of the instrument: 
1. In the web interface, from the left navigation, click Admin. A login page is displayed. 
2. Enter the current password in the Password box (the default is "admin"). 
3. Click Login. The Administration page is displayed. 
4. Enter the Year. 
5. Select the Month, Day, Hour, Minutes and Seconds from the lists. 
6. Click Submit. The new time and date information takes effect immediately. 

 

Unit page 
Create Config Script: Save the set up of the instrument as a script. 

To create the script: 
1. Click Create Config Script. The Create Config Script dialog box is displayed. 
2. To create a script that will run automatically when the instrument is powered on, select "Auto-

execute on powerup." Note that this will overwrite the existing autoexec script. 
3. To create a script with a new name, select Name and enter the name. 
4. Click OK. 

 

Reset: Resets all instruments in the TSP-enabled system. This is only available if the instrument is 
the master. 

Open All: Click this to open all relays on all slots. 

Upgrade Firmware: Select a firmware upgrade file to download to the instrument and begin the 
upgrade process. 

Channel Connect Rule: Select the channel connect rule. See Connection methods for close 
operations (on page 2-82) for detail. 

Digital I/O Lines: This is the tool to configure the 14 digital I/O lines of the instrument. Values can be 
read or written to the ports, or each individual bit can be toggled. "Write Protect" can be set 
individually for any I/O line. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-78 707B-901-01 Rev. B / January 2015 

 

Generate Report: This generates an instrument report you can use to: 

• Review card or instrument information, including a basic description, the firmware revision, and the 
serial number. 

• Review configuration information, including card configuration and number of poles. 
• Review the number of closures for each channel on the selected slots. The counts reported for the 

following cards indicate the number of closures since the last power cycle of the card: 
• 7072 
• 7072-HV 
• 7173-50 
• 7174A 

• The number of closures are the closures that have occurred over the lifetime of the card for all other 
cards. 

 

To print the report, click Print. 

To clear the report information from the screen, click Clear. 
 

LXI page 
The Model 707B or 708B is a LXI Class C instrument. The LXI page is a read-only page that displays 
the LXI information about the instrument. 

 

IP Config 
The IP Config allows you to review and change the LAN connection information. 

See Change the IP configuration through the web interface (on page 2-55) for more information. 
 

Log page 
The event log records all LAN[0-7] triggers generated and received and can be viewed over any 
command interface, including the web interface. The following figure shows the view of the LAN[0-7] 
event log from the embedded web interface. 

Up to 32 LAN[0-7] events are logged and shown on this page. The event log is circular and rolls over 
after 32 events are captured. The LAN[0-7] events correspond to the lan.trigger[1-8] subsystem. 

 

Figure 53: Event log 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-79 

 

The timestamp, event identifier, the IP address and the domain name identify the incoming and 
outgoing LXI trigger packets. The following table provides detailed descriptions for the columns in the 
event log. 

 

 

Event log descriptions 

Column title Description Example 

Receive Time Displays the date and time when the LAN 
trigger occurred in UTC, 24-hour time 

06:56:28.000 8 May 2008 

EventID Identifies the lan.trigger[N] that generates an 
event 

LAN0 = lan.trigger[1] 
LAN1 = lan.trigger[2] 
LAN2 = lan.trigger[3] 
LAN3 = lan.trigger[4] 
LAN4 = lan.trigger[5] 
LAN5 = lan.trigger[6] 
LAN6 = lan.trigger[7] 
LAN7 = lan.trigger[8] 

From Displays the IP address for the device that 
generates the LAN trigger 

localhost 
192.168.5.20 

System 
Timestamp 

A timestamp that identifies the time the event 
occurred. The timestamp uses the following: 
PTP timestamp 
Seconds 
Fractional seconds 
The Model 707B or 708B does not support the 
IEEE-1588 standard; the values in this field are 
always 0 (zero) 

 

HWDetect Identifies a valid LXI trigger packet LXI 
Sequence Each instrument maintains independent 

sequence counters: 
One for each combination of UDP multicast 
network interface and UDP multicast destination 
port. 
One for each TCP connection. 

 

Domain Displays the LXI domain number (the default 
value is 0 (zero)) 

0 
1523 

Flags Contain data about the LXI trigger packet Values: 
1 - Error 
2 - Retransmission 
4- Hardware 
8 - Acknowledgments 
16 - Stateless bit 

Data The Model 707B or 708B does not support the 
IEEE-1588 standard; the values in this field are 
always 0 (zero) 

 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-80 707B-901-01 Rev. B / January 2015 

 

Switch operation 

Working with channels 
Overview 
This section gives an overview of working with channels, including a discussion of channel types, 
selecting channels, opening and closing channels, setting common channel attributes, and setting up 
channel patterns. 

To install the switching card, refer to instructions in Models 707B and 708B Quick Start Guide. 

The Models 707B and 708B have specific settings that apply to opening and closing channels. 
 

Hot switching can dry weld reed relays such that they will always be on.  Hot switching is 
recommended only when external protection is provided. 

 

 
 

Specifying a channel 
The channels on the cards that you can use with the Model 707B or 708B are referred to by a 
channel specifier. You will use the specifier to identify channels for use with close and open 
operations, scans, and channel patterns. The specifier is used for all interfaces (front panel, web, and 
remote command). 

A channel specifier is a four or five-digit alphanumeric sequence. The first digit is always the slot 
number of the slot in which the card is installed in the instrument. The remaining digits vary 
depending on the type of card. 

The following sections describe the channel specifier in more detail and provide generic examples 
(which may or may not be suitable for your installed cards). 

 

Channel types 

The Models 707B and 708B support cards with matrix channels. The documentation for your card 
model lists the available channel types. 

Specify multiple channel numbers using lists. Lists build on the individual channel specifier. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-81 

 

Matrix card channel specifiers 

The channels on the matrix cards are referred to by their slot, bank, row, and column numbers: 

• Slot number: The number of the slot in which the card is installed. 
• Bank number: The bank number, if used by your card. See your card documentation. 
• Row number: The row number is either 1 to 8 or A to Z. See your card documentation. 
• Column number: Always two digits. For columns greater than 99, use A, B, C and so on to 

represent 10, 11, 12, …; the resulting sequence is: 98, 99, A0, A1, …, A8, A9, B0, B1, … 

 
Matrix channel examples 

Specifier Slot 
number 

Bank 
number 

Row 
number 

Column 
number 

1A05 or 1105* 1 N/A 1 05 

1C05 1 N/A 3 05 
3C12 3 N/A 3 12 
* Specifier depends on card type. See your card documentation for 
detail. 

  
 
 

Channel list parameter for remote commands 

The channel list parameter is a string-type parameter that is used when controlling the relays of the 
Model 707B or 708B using a remote command interface. You can specify a list of individual channels 
or a range of channels in the channel list parameter. 

In the command descriptions, the channel list parameter is shown as channelList. 

When sending this parameter: 

• Enclose the contents of the channel list in either single (') or double (") quotes. The beginning and 
end quotes must be the same style. 

• Use a comma or semicolon to separate the channel list or channel patterns (on page 2-92). 
• The string may contain a single channel, single channel pattern, multiple channels, or multiple 

channel patterns that are comma-delimited. 
• Use a colon between the start and end channel to specify a range of channels. The lowest 

channel must be first and the highest last. 
 

Examples: 

• To perform an open or close operation on row 1 and columns 3 and 5 of slot 1, use ("1A03, 
1A05") for the channelList parameter. 

• To perform an open or close operation on all channels in the range of row 1 and columns 1 
through 5 of slot 1, use ("1A01:1A05") for the channelList parameter. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-82 707B-901-01 Rev. B / January 2015 

 

Queries that return a list of channels 

For queries that return a channel list parameter, the Model 707B or 708B separates the channels by a 
comma or semicolon, depending on the command. When multiple channels are used in the query, the 
information for the lowest numbered channel is listed first, increasing to the highest numbered 
channel. 

When multiple slots are used in the query, the information for the lowest slot number is listed first and 
increases to the highest slot and channel. 

 

Connection methods for close operations 
You can dictate the order in which relays are opened and closed using the channel connection rule. 

 
 

When the connection rule is set to break before make, the instrument ensures that all switch 
channels open before any switch channels close. This behavior covers the most common 
applications and is considered the safest connection rule because the tested device is 
completely decoupled from the instrument. This is the default behavior. When switch 
channels are both opened and closed, this command executes not less than the addition of 
both the open and close settle times of the indicated switch channels. 

When the connection rule is set to make-before-break, the instrument ensures that all 
switch channels close before any switch channels open. This behavior should be applied 
with caution because it will connect two test devices together for the duration of the switch 
close settle time. When switch channels are both opened and closed, the command 
executes not less than the addition of both the open and close settle times of the indicated 
switch channels. 

With no connection rule (set to channel.OFF), the instrument attempts to simultaneously 
open and close switch channels in order to minimize the command execution time. This 
results in faster performance at the expense of guaranteed switch position. During the 
operation, multiple switch channels may simultaneously be in the close position. Make sure 
your device under test can withstand this possible condition. When switch channels are 
both opened and closed, the command executes not less than the greater of either the open 
or close settle times of the indicated switch channels. 

Cold switching is highly recommended. 

 

Hot switching can dry weld reed relays such that they will always be on. Hot switching is 
recommended only when external protection is provided. 

 

The channel connect rule determines the order in which multiple channels are opened and closed on 
the instrument. This attribute applies to electromechanical, reed, and solid state relay switching cards. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-83 

 

You can set the channel connect rule to be: 

• BBM (break before make): The instrument ensures that all switch channels open before any 
switch channels close. It is used to avoid momentary shorting of two voltage sources. This is the 
default. 

• MBB (make before break): The instrument ensures that all switch channels close before any 
switch channels open. It is used to eliminate transients caused by switching between current 
sources. MBB should be applied with caution because it connects two test devices together for 
the duration of the switch close settle time. 

• OFF: Permits the instrument to initiate close and open operations simultaneously. This minimizes 
settling time for the close operation. 

 

You cannot guarantee the sequence of open and closure operations when the channel connect rule 
set to OFF. It is highly recommended that you implement cold switching when the channel connect 
rule is set to OFF. 

 

To set the channel connect rule through the front panel interface: 
1. Press the MENU key. 
2. Use the navigation wheel to scroll to the CHANNEL menu item. 
3. Press the ENTER key (or the navigation wheel) to display the CONNECT MENU. 
4. From this menu, select the RULE menu item. 
5. Set the rule to BBM, MBB, or OFF. 
6. Use the ENTER key to apply the selection. 
7. Use the EXIT key to leave the menu. 

 

To set the channel connect rule through the web interface: 
1. On the Unit page, in the upper left corner, select the channel connect rule menu. 
2. Select Break Before Make, Make Before Break, or OFF. 

 

To set the channel connect rule through the remote command interface: 

Use the channel.connectrule command. Refer to the TSP commands for details. 
 

Using sequential connect 
During normal operation, the instrument attempts to minimize the duration of any channel action for a 
given card type and connect rule. This can result in multiple channels closing or opening 
simultaneously. 

To prevent simultaneous closing and opening, you can use a sequential connection. A sequential 
connection ensures an orderly closing or opening of single individual channels in a channel list. An 
orderly action provides for: 

• Repeatable and deterministic channel operation times 
• Minimized power usage 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-84 707B-901-01 Rev. B / January 2015 

 

You incur settling times at each close or open operation. If sequential connection is not selected, 
action settling times may vary depending on the card type. The total settling time is the sum of the 
settling times for each specified channel, plus any user delays that have been set for any closed 
channels. To better calculate timing, you can enable sequential channel connections. Deterministic 
implies that you can determine the time for a close operation to happen. For example, if you close 
three channels and each takes 4 ms to close, with sequential on, it will take 12 ms. With sequential 
off, it may be 4, 8 or 12 ms, depending on whether or not the card can close multiple channels at 
once. 

 

Opening and closing relays in a sequential manner also uses minimum power. Since only one relay is 
closed or opened at any given time, the power used for that action is for a single relay and not 
additive. 

By default, sequential connections are turned off. The order in which channels are opened or closed 
is not guaranteed. This feature also applies to scanning. 

 

The sequential setting affects all channels in the instrument. 
 

To enable sequential connections through the front panel interface: 
1. Press the MENU key. 
2. Use the navigation wheel to scroll to the CHANNEL menu item. 
3. Press the ENTER key. 
4. Select the SEQUENTIAL menu item. 
5. Select ON or OFF. 
6. Use the ENTER key to apply the selection. 
7. Use the EXIT (LOCAL) key to leave the menu. 

 

To enable sequential connections through the web interface: 
1. Open the UNIT page. 
2. In the upper left corner, select the Sequential check box (next to the Channel Connect Rule list). 

 

To enable sequential connections through the remote command interface: 

Send the command: 
channel.connectsequential (on page 7-19) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-85 

 

Determining the number of relay closures 
The Models 707B and 708B keeps an internal count of the number of times each switching card relay 
has been closed. The total number of relay closures is stored in nonvolatile memory on the switching 
card. Use this count to determine when relays require replacement (see the card documentation for 
information regarding the contact life specifications). 

Relay closures are counted only when a relay transitions from open to closed state. If you send 
multiple close commands to the same channel without sending an open command, only the first 
closure is counted. 

The counts reported for the following cards indicate the number of closures since the last power 
cycle of the card: 

 7072 

 7072-HV 

 7173-50 

 7174A 

For all other cards, the number of closures are the closures that have occurred over the lifetime of 
the card. 

 

To view the close count for a channel from the front panel: 
1. Use the navigation wheel  to select the channel. 
2. Press the CONFIG key. 
3. Press the CHAN key. 
4. Use the navigation wheel to scroll to the "COUNT" menu item. 
5. Press the ENTER key (or the navigation wheel) to display the close counts. 
6. Use the EXIT key to leave the menu. 
To view the close count for a channel from the web interface: 
1. From the list on the left, select a slot with an installed card. 
2. Right-click a channel. The Channel Configuration dialog box is displayed. 
3. Check the value in the Closure Count box. 

You can also work with channel patterns using the command channel.getcount(). 
 

Identify installed switching cards 
To identify installed switching cards from the front panel: 

Press the SLOT key to scroll through the model numbers, descriptions, and firmware revisions of the 
installed switching cards. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-86 707B-901-01 Rev. B / January 2015 

 

To identify installed switching cards from the web interface: 
1. Select the Unit page. 
2. In the Report area, select the slots that you want information about. 
3. Select Firmware Revision. 
4. Click Generate Report. Information about the cards in the slots is displayed below the button. 

 

To identify installed switching cards from the remote command interface: 

Use print(slot[X].idn)to query and identify installed switching cards: 
print(slot[X].idn) 

Where: X = slot number (from 1 to 6) 
 

Example 

To get a list of all switching cards installed in the slots of a Model 707B or 708B, send the following 
command over the remote command interface: 
for x=1,6 do print (slot[x].idn) end 

 

The response will be similar to the following: 
7174, 8x12 Fast Low-I Matrix, 01.00a, <Module Serial Number> 
7072, 8x12 Semi Matrix, 01.00a, <Module Serial Number> 
Empty Slot 
Empty Slot 
Empty Slot 
Empty Slot 

 

Selecting a channel from the front panel 
You can perform operations on a single channel from the front panel. To select a channel, see 
Selecting channels from the front panel (on page 2-15). Once a channel is selected, it is the selected 
channel for front panel operation. 

 

Closing and opening channels 
Switching channels allow various methods for closing and opening relay channels. 

 

You can use scans to perform a user-specified sequence of close and open operations on multiple 
channels. Refer to Scanning and triggering (on page 3-1) for information on scan operations. 

 

Operating a channel from the front panel 

For the Model 707B, also see Selecting and closing channels using the crosspoint display to select a 
channel using the crosspoint display. 

 

Hot switching can dry-weld reed relays, causing them to always be on. Hot switching is 
recommended only when external protection is provided. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-87 

 

You can perform operations on a single channel from the front panel. 
To select a channel: 
1. If the instrument is being controlled remotely, press EXIT to allow control from the front panel. 
2. Turn the navigation wheel  until the channel specifier is displayed on the front panel. 

To: 
 Close a channel without affecting any other channels: Select CLOSE. 
 Open the channel: Press OPEN. 
 Close a channel and open any other closed channels on the instrument: Select CHAN and 

select EXCLOSE. Press ENTER to close the selected channels. 
 Close a channel and open any other closed channels on the slot that contains the selected 

channel: Select CHAN, and then select EXSLOTCLOSE. Press ENTER to close the selected 
channels. 

Once a channel is selected, it is the selected channel for any subsequent front-panel operations. 
 
 

Open and close channels from the Channel Action Menu 

You can also use the options in the Channel Action Menu to open and close channels. 
To use the Channel Action Menu to open and close channels: 
1. Go to channel view. 
2. Select the channel you want to open or close. 
3. Press CHAN. 
4. Use the navigation wheel  to select the option. You can select: 

 OPEN: Opens the selected channel. 
 CLOSE: Closes the selected channel. 
 EXCLOSE: Closes the selected channel; opens any other channels that are closed. 
 EXSLOTCLOSE: Closes the selected channel; opens any other channels that are closed on 

the same slot. 
5. Press the navigation wheel  to open or close the channel. 

 

Selecting, closing, and opening a channel from the web interface 

You can perform operations on a single channel from the web interface.  
To select a channel: 
1. You must log into the instrument to work with the channels. See Log in to the instrument (on page 

2-67). After logging in, you can access the channel controls. 
2. From the instrument home page, from the navigation on the left, select the slot that contains the 

channels you want to work with. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-88 707B-901-01 Rev. B / January 2015 

 

Figure 54: Web interface Cards list 

 
 
 

3. To close a channel, click the channel. The display of the channel depends on the card that you 
have installed. Some examples are shown here. 

Figure 55: Selecting, closing, and opening a channel from the web interface 

 
 

Figure 56: Selecting, closing, and opening a channel from the web interface 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-89 

 

Figure 57: Close a channel 

 
 

4. To open a closed channel, click it again. 
5. To perform an exclusive close on a channel: 

a. Select Exclusive Slot Close in the Channel Action Type box. 
 

Figure 58: Select exclusive slot close 

 
 

b. Click a channel to close that channel and open all other channels. 
 

Selecting, closing, and opening a channel using remote commands 
To close or open a channel from the remote interface: 

You can open and close channels using the following commands: 

channel.close() (on page 7-17) 
channel.exclusiveclose() (on page 7-22) 
channel.exclusiveslotclose() (on page 7-23) 
channel.open() (on page 7-33) 

For example, to close channel 1001 over the remote interface, send the command: 
channel.close("1001") 

 

Refer to the TSP commands for details on commands. 
 

Viewing the close or open status of a channel 
To determine whether a channel is closed or open, you can view its status using the front panel 
interface, remote command query, or instrument web page. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-90 707B-901-01 Rev. B / January 2015 

 

Viewing status from the front panel 

Closed channels are shown on the display of the instrument, separated by commas. If more than one 
line of closed channels are displayed, you can press DISPLAY to display the full list. Use the 
navigation wheel  to scroll through the list. 

  
 

For a four-pole operation the paired channel is not displayed on the front panel of the Models 707B 
and 708B. 

 

Viewing status from the remote command interface 

To view a list of closed channels, use the channel.getclose() command. For example: 
print(channel.getclose("allslots")) 

To view the close and open status of channels, use the channel.getstate() command. 
 

Viewing status from the instrument web page 

To view status from the instrument web page, from the list on the left, select the slot that contains the 
channel. The status is displayed on the web page for the slot. 

 

Channel attributes 
You can use the front panel and command options to set attributes for specific channels. Some of the 
attributes you can set are adding a delay, forbidding closure of a channel, and setting channel labels, 
which are described in the following sections. 

 

 
 

Set additional delay 

You can set an additional delay to incur after the relay settles when closing. 
To set additional delay time from the front panel: 
1. Display a channel (you might need to press DISPLAY). 
2. Select the channel for which you want to set attributes. 
3. Press CONFIG, then press CHAN. 

• DELAY: Additional delay to incur after the relay settles. Enter the value for the delay in seconds. The 
total delay for channel operation is user delay plus the relay settling time. 

To set additional delay time from the web interface: 
1. From the list on the left, select the slot that contains the channel you want to set an additional 

delay on. 
2. Right-click on the channel you want to bring up the channel configuration dialog box for that 

channel. 
3. Enter the desired delay time (in seconds) in the delay time field on the right side of the dialog box. 

Once the desired time is entered, click OK. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-91 

 

To set additional delay time through the remote interface: 

Use the command: 
channel.setdelay() (on page 7-41) 

 

Forbid closing a channel 

You can prevent a channel from being closed from any interface by setting it to forbidden. 

If the channel that is to be forbidden is used in a channel pattern, the pattern is deleted when you set 
the channel to be forbidden to close.  

 

To forbid closing of a channel from the front panel: 
1. Display a channel (you might need to press DISPLAY first). 
2. Select the channel for which you want to set attributes. 
3. Press CONFIG, then press CHAN. 
4. Use the navigation wheel  to select FORBID. 
5. Select Yes to prevent a channel from being closed or No to allow closures. 
6. Press the navigation wheel  to save the change. 

 

To forbid closing of a channel from the web interface: 
1. From the list on the left, select the slot that contains the channel you want to forbid close on. 
2. Right-click the channel. 
3. Select the forbidden checkbox. 
4. Click OK. 

 

To forbid closing of a channel from the remote interface: 

You can also set this attribute using the following commands: 

• channel.setforbidden() (on page 7-42) 

• channel.clearforbidden() (on page 7-16) 
 

Set up labels 

You can define labels for rows, columns, and channels. 

Labels must be unique; they cannot have the same as the name of another row, column, channel, or 
channel pattern. Labels cannot contain spaces, and they do not persist through a power cycle. 

Channel labels can be up to 19 characters. Row and columns labels can be up to 8 characters. On 
the crosspoint display, the first four characters of the label are displayed. On the bottom display, the 
full label is displayed. 

You can only set labels for slots and channels that are installed in the instrument. 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-92 707B-901-01 Rev. B / January 2015 

 

To set up labels from the front panel: 
1. Display a channel (you might need to press DISPLAY first). 
2. Select the channel for which you want to set labels. 
3. Press CONFIG, then press CHAN. 
4. Use the navigation wheel  to select the type of label you want to define: 

 LABEL: Sets the label that is displayed on the front panel for the specified crosspoint. 
 LABEL-ROW: Sets the label that is displayed on the front panel for the specified row.  
 LABEL-COL: Sets the label that is displayed on the front panel for the specified column.  

5. Change the name using the navigation wheel . 
6. Press the navigation wheel  to save the change. 

 

To set up labels from the web interface: 
1. From the list on the left, select the slot that contains the channel you want to set up a label on. 
2. Right-click the channel. 
3. In the Label box, enter the label.  
4. Click OK. 

 

To set up labels from the remote interface: 

Use the commands: 

• channel.setlabel() (on page 7-43) 
• channel.setlabelrow() (on page 7-46) 
• channel.setlabelcolumn() (on page 7-44) 

You can use labels to refer to the channels in commands. For example, if you set the label for 
channel 3005 to "start", you could use "start" to close and open the channel.  

This is shown in the following example: 
channel.setlabel("1A01","start") 
channel.close("start") 
channel.setlabelrow("1B01", "SMU2") 
channel.setlabelcolumn("1B01", "DUT2") 
channel.close("SMU2+DUT2") 
print(channel.getclose("allslots")) 

 

Channel patterns 
You can use channel patterns as a convenient way to refer to a group of switching channels with a 
single alphanumeric name. When you perform close or open operations on a channel pattern, only 
the channels that are in the channel pattern are affected. 

There is no speed difference when performing close and open operations on channel patterns 
compared to performing the same operations on individual channels or a list of channels. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-93 

 

Channel patterns inherit the delay times of the individual channels that comprise the pattern. For 
information on the sequence of close operations on multiple channels, refer to Connection methods 
for close operations (on page 2-82). 

When you create a channel pattern, make sure to: 

• Include all of the channels that are needed for that channel pattern. 
• Check that channels contained in the pattern are correct. 
• Check that channels contained in the pattern create the desired path connection. 
• Make sure that channels that you want to include in the pattern are not set to forbidden to close.  

 

When naming the channel pattern, be aware: 

• The first character of the name must be alphabetic (upper or lower case) 
• Names are case sensitive 
• Pattern names must be different than row, column, and channel labels 

 

To create a channel pattern from the front panel: 
1. Close the channels you want to include in the channel pattern. 
2. Press the PATT key. 
3. From this menu, select the CREATE menu item. 
4. From this menu, select the SNAPSHOT menu item. 
5. At the prompt, enter a pattern name using the navigation wheel. 
6. Use the ENTER key to apply the selection. 
7. Use the EXIT key to leave the menu. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-94 707B-901-01 Rev. B / January 2015 

 

To create a channel pattern from the web interface: 
1. From the left navigation, click a slot. 
2. Click Pattern (above the Channel Action Type box). The Channel Pattern Configuration dialog 

box is displayed. 

Figure 59: Channel pattern configuration dialog box 

 
 

3. Enter a name in the box at the top. 
4. From the Channels Available list, select the channels you want to add. You can use Ctrl+click and 

Shift+click to select multiple channels. 
5. Click Add. 
6. When the Selected channel list is complete, click Create. 

 

If you close the channels you want to add to the new pattern, you can enter a name and click 
Snapshot to create the new pattern. The closed channels are added to a new pattern. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-95 

 

To create a channel pattern from the remote command interface: 

You can also work with channel patterns using the following commands: 

channel.pattern.catalog() (on page 7-35) 
channel.pattern.delete() (on page 7-36) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 
channel.pattern.snapshot() (on page 7-39) 

Refer to the TSP commands for more details. 
 

Performing close and open operations on channel patterns 

Careless channel pattern operation could create an electric shock hazard that could result 
in severe injury or death. Improper operation can also cause damage to the switching cards 
and external circuitry. The control of multiple channels using channel patterns should be 
restricted to experienced test engineers who recognize the dangers associated with 
multiple channel closures. 

You can close and open channel patterns the same way you do for individual channels. 

To perform a particular operation on a channel pattern, use the appropriate open or close command 
with the channel pattern name for the channelList parameter. Refer to Close and open channel 
operations and commands for detail. 

When you request a close or open operation, the Model 707B or 708B verifies that the channels exist 
for a pattern, but does not verify that the switch path connection is correct. You must ensure the 
requested operation is safe for a channel pattern and that a good connection will result for your 
application with the channel pattern. 

 

To close or open the channels in a channel pattern from the front panel: 
1. Press the PATT key to display a channel pattern (you might need to press DISPLAY first). 
2. Select the channel pattern you want to open or close. 

 

Model 707B only: Note that when you select a pattern, on the crosspoint display, the lights for the 
channels included in the pattern are dimly lit. 

 

3. Perform any of the following actions: 
• Open the channels in the channel pattern: Press OPEN. 
• Close the channels in the channel pattern without affecting any other channels: Press CLOSE. 
• Close the channels in the channel pattern and open any other closed channels on the instrument: 

Select PATT and select EXCLOSE. Press ENTER to open or close the channels. 
• Close the channels in the channel pattern and open any other closed channels on the slot: Press PATT 

and select EXSLOTCLOSE. Press ENTER to open or close the channels. 
 

To close or open the channels in a channel pattern from the web interface: 
1. From the list on the left, select a slot with an installed card. 
2. Click Pattern. The Channel Pattern Configuration dialog box is displayed. 

 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-96 707B-901-01 Rev. B / January 2015 

 

Figure 60: Channel Pattern Configuration dialog box 

 
 

3. Select the pattern. 
4. In the Actions box, to: 

• Open the channels in the channel pattern: Click OPEN. 
• Close the channels in the channel pattern without affecting any other channels: Select Channel Close, 

then click CLOSE. 
• Close the channels in the channel pattern and open any other closed channels on the instrument: 

Select Exclusive Close and click CLOSE. 
• Close the channels in the channel pattern and open any other closed channels on the slot: Select 

Exclusive Slot Close and click CLOSE. 
 

To close or open the channels in a channel pattern from the remote interface: 
channel.close() (on page 7-17) 
channel.exclusiveclose() (on page 7-22) 
channel.exclusiveslotclose() (on page 7-23) 
channel.open() (on page 7-33) 

 

Refer to the TSP commands for detail on each command. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-97 

 

Channel pattern storage 

Channel patterns are: 

• Part of the script that is created with Create Config Script. 
• Deleted when the instrument is reset. 
• Deleted when a channel associated with the pattern is reset. 
• Allocated 32KB of memory in the Models 707B and 708B instrument for all channel patterns. 

To see how much of the channel pattern memory is available or used, send the command: 
print(memory.available()) 

or 
print(memory.used()) 

Refer to memory.available() (on page 7-129) or memory.used() (on page 7-130). 

 
 

Reset a channel 
You can reset a channel to its factory default settings. When you reset a channel: 

• A closed channel opens 
• Additional user delay is set to zero 
• Labels return to default value 
• If the channel is forbidden to close, it is cleared from being forbidden to close 
• If the channel is used in channel patterns, the channel patterns that contain the channel are deleted. 

Using this function to reset a channel involved in scanning invalidates the existing scan list. The list 
has to be recreated before scanning again. 

Resetting a channel deletes any channel patterns that contain that channel. 

To reset a channel from the front panel: 
1. Display a channel. 
2. Select the channel you want to reset. 
3. Press CHAN. 
4. Select RESET. 
5. Select SELECTED, ALL, or CANCEL. 
6. Press the navigation wheel  to reset the channel. 
To reset all channels on a slot from the web interface: 
1. Select the slot that contains channels you want to reset. 
2. Click RESET SLOT. 
3. All channels on the slot are reset. 
To reset a channel from the remote interface: 

Send the command channel.reset() (on page 7-40). 
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-98 707B-901-01 Rev. B / January 2015 

 

Pseudocards 
You can perform open, close, and scan operations and configure your system without having an 
actual switching card installed in your instrument. Using the remote interface, you can assign a 
pseudocard to an empty switching card slot, allowing the instrument to operate as if a switching card 
were installed. 

A pseudocard cannot be configured from the front panel. However, once the remote configuration is 
complete, you can take the instrument out of remote mode and use the front panel. Press the EXIT 
(LOCAL) key to take the instrument out of remote mode. 

When the instrument is turned off, the pseudocard is no longer assigned to the slot. 
 

Pseudocards programming example 
Use the following command to set the pseudocard of slot 2 for 7072 8x12 Semi Matrix card 
simulation: 
slot[2].pseudocard = 7072 

 

Save the present configuration 
You can capture the present settings of the instrument using the create configuration script feature. 
When you run this feature, the configuration script is created and saved. You can run it later to return 
to that configuration, or set it up to be the autoexec script. The configuration script is a normal TSP 
script; once created, you can use it and modify it as you would any other script. 

The configuration script includes: 

• Comment lines that identify the script as auto created and the date and time of creation. 
• The cards that are installed and the slots in which they are installed. 
• A reset command, which will reset the instrument to the factory default settings. 
• The commands to reconfigure the instrument. The configuration script only captures settings that 

have been changed from the factory defaults. 
 

Later, when you run the configuration script, the script will verify that the installed cards and slots 
match. If they do not, a message is displayed, the script stops, and the configuration is not restored. 

Note that the configuration script does not include the status of channels. As initially created, the 
configuration script performs a reset, which opens all channels. 

 

You can modify the script to change the card models or slots. However, you must make sure that all 
subsequent commands are valid for the card model or slot change. 

 

For more information on scripts, see Fundamentals of scripting for TSP (on page 6-1). For more 
information on the autoexec script, see Autoexec script (on page 6-7). 

 

A sample configuration script is shown in the following example. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 2: General operation 
 

707B-901-01 Rev. B / January 2015 2-99 

 

 

--Auto created configuration script Indicates that this was 
created with the Create 
Configuration Script feature 

--Tue Jul 13 13:02:12 2010 Date and time stamp 
if string.find(slot[1].idn, "7174") == nil then 
   print( 
      "Card installed in slot 1 needs to be a 7174.") 
   display.clear() 
   display.settext("Card installed in$N" .. 
      "$Bslot 1$R needs to be a $B7174$R") 

Code that verifies that card 
and slot are in agreement 

else  
   reset() Reset command 
   channel.setlabel("1A01", "FirstRowCol") 
   channel.setlabel("1A12", "LastRowCol") 
   channel.setlabel("1B01", "FirstNextRow") 
   channel.setlabel("1B12", "LastNextRow") 
   channel.pattern.setimage("1A01,1B01","Row1_2_col_1") 
   channel.pattern.setimage("1A02,1B02","Row1_2_col_2") 
   channel.pattern.setimage("1A03,1B03","Row1_2_col_3") 
   channel.pattern.setimage("1A04,1B04","Row1_2_col_4") 
   channel.pattern.setimage("1A05,1B05","Row1_2_col_5") 
   channel.pattern.setimage("1A06,1B06","Row1_2_col_6") 
   channel.pattern.setimage("1A07,1B07","Row1_2_col_7") 
   channel.pattern.setimage("1A08,1B08","Row1_2_col_8") 
   channel.pattern.setimage("1A09,1B09","Row1_2_col_9") 

   
channel.pattern.setimage("1A10,1B10","Row1_2_col_10") 
   
channel.pattern.setimage("1A11,1B11","Row1_2_col_11") 
   
channel.pattern.setimage("1A12,1B12","Row1_2_col_12") 
   collectgarbage() 

   scan.trigger.channel.stimulus = 
      scan.trigger.EVENT_CHANNEL_READY 
   scan.create() 
   scan.mode = 0 
   scan.bypass = 1 
   scan.add("Row1_2_col_1") 
   scan.add("Row1_2_col_2") 
   scan.add("Row1_2_col_3") 
   scan.add("Row1_2_col_4") 
   scan.add("Row1_2_col_5") 
   scan.add("Row1_2_col_6") 
   scan.add("Row1_2_col_7") 
   scan.add("Row1_2_col_8") 
   scan.add("Row1_2_col_9") 
   scan.add("Row1_2_col_10") 
   scan.add("Row1_2_col_11") 
   scan.add("Row1_2_col_12") 

Code that captures the 
non-factory default settings 

end  
 



Section 2: General operation Models 707B and 708B Switching Matrix Reference Manual 
 

2-100 707B-901-01 Rev. B / January 2015 

 

Create a configuration script 
When you run the create configuration script feature, it automatically generates a user script that is 
saved to a script with a name that you define. Create configuration script is available from the front 
panel of the instrument, the web interface, and the remote interface. 

When you specify the name of the script, be aware that if you specify a name that already exists 
(including autoexec), the existing script is overwritten with the new configuration script. 

To create a configuration script from the front panel: 
1. Press MENU. 
2. Select SCRIPT. 
3. Select CREATE-CONFIG. The AUTOEXEC ON PWR UP prompt is displayed. 
4. Select Yes or No. 
5. If AUTOEXEC is set to no, at the name prompt, enter the name of the configuration. The default 

name is config01. 
6. Press ENTER. 
7. The AUTOEXEC message is displayed again. Press EXIT several times to return to the normal 

display. 
To create a configuration script from the web interface: 
1. Open the Unit page. 
2. Log in if necessary. 
3. Click Create Config Script. 

Figure 61: Create Config Script dialog box 

 

4. To make the configuration script the autoexec script, select Auto-execute on powerup. 
5. To assign a name (the script will not be the autoexec script), select Name and enter a name in 

the box. 
6. Click OK. The configuration script is created. 

To create a configuration script from the remote interface: 

Send the command: 
createconfigscript(name) 

Where name is the name you want to assign to the configuration script. 
 

Running the configuration script 
You can run the configuration using the same methods as any other script. See Run scripts (on page 
6-5) for information. 

 



 

 

In this section: 

Scanning and triggering ........................................................... 3-1 
Trigger model ........................................................................... 3-1 
Scan and step counts ............................................................... 3-4 
Basic scan procedure ............................................................... 3-5 
Remote interface scanning....................................................... 3-8 
Hardware trigger modes ......................................................... 3-13 
Understanding synchronous triggering modes ....................... 3-17 
Events .................................................................................... 3-21 

 
 

Scanning and triggering 
A scan is a series of steps that opens and closes switches sequentially for a selected group of 
channels. During each step, actions occur, such as waiting for a trigger, taking a measurement, and 
completing a step count. Scans automate actions that you want to perform consistently and 
repeatedly on a set of channels. 

Triggers are events that prompt the instrument to move from one step to another in a scan. Triggers 
can come from a variety of sources, such as a key press, digital input, or expiration of a timer. The 
sequence of actions and events that occur during the scan is called the trigger model. 

Scanning and triggering allow you to synchronize actions across channels. You can set up a scan 
using the trigger model to precisely time and synchronize the Model 707B or 708B between channels 
and multiple instruments. You can also use triggers without the triggering model to set up a scan to 
meet the needs of a specific application that does not fit the triggering model. 

 

Trigger model 
When you run a scan, the scan sequence follows a trigger model. The trigger model is shown in the 
following flowchart. 

 

In Models 707B and 708B, only scanning operations use the trigger model. Individual open, close, 
and measure commands do not affect the trigger model. 

 

The trigger model is used during a scan only. For front panel operation, you use the SCAN and STEP 
keys to perform scan actions. For remote operation, you use the scan functions and attributes 
commands, for example, scan.execute() and scan.mode. 

 

Section 3 

Functions and features 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-2 707B-901-01 Rev. B / January 2015 

 

You cannot use an external trigger event (for example, digital I/O) for the channel stimulus setting of 
the trigger model when using the front-panel STEP key. 

 
 

Figure 62: Models 707B and 708B triggering overview 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-3 

 

Trigger model components 
The individual components of the trigger model are explained in the following paragraphs. 

Start scan 

When a scan is initiated, the instrument leaves the idle state and prepares to start scanning. To 
prepare for scanning, it verifies that channel settings match the scan settings (such as opening all 
channels or opening only channels on specific slot). After preparation is complete, the instrument 
generates the Scan Ready Event and either starts immediately or waits for the arm stimulus event. 

 

When the scan is complete, the instrument returns to the idle state. 

Wait for scan start trigger 

The scan can start immediately after receiving the Scan Ready Event, or the instrument can wait for a 
start trigger (also called the arm action). If it waits for a start trigger, the scan does not start until it 
receives the start trigger. 

When the scan starts, the instrument generates the Scan Start Event. 
 

Wait for channel action trigger 

The channel action trigger is an event that tells the instrument to begin processing the next channel 
action. 

You can bypass the channel action trigger if this is the first step of the first scan count. Bypass is 
available from the font-panel CONFIG+SCAN menu, or by using the command scan.bypass. 

 

Channel action 

During the channel action, the instrument opens or closes channels as needed. 

When the channel actions are complete, the instrument generates the Channel Ready Event. 
 

Step count complete 

The trigger model repeats these actions for every step in the scan list. The instrument loops back to 
wait for channel action trigger for each step until the steps are complete. 

When all the steps are complete, the instrument generates the Scan Complete Event. 
 

Scan count complete 

The scan can be set to repeat. If the scan count is not complete, the instrument loops back to wait for 
the scan start trigger. 

Idle 

After the instrument has completed the scan list the requested number of times, the instrument 
generates the Idle Event. This is the completion of the scan. 

 

Trigger model events and associated commands 
The Models 707B and 708B trigger model has the following events and associated command 
attributes. These events, along with other events in the system, may be used to configure various 
stimulus settings. 

 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-4 707B-901-01 Rev. B / January 2015 

 

For example, the channel ready event (scan.trigger.EVENT_CHANNEL_READY) may be set to 
pulse digital I/O line 3 when it gets generated. The command message for this would be: 
digio.trigger[3].stimulus = scan.trigger.EVENT_CHANNEL_READY 

Likewise, you can use the digital I/O line 5 trigger event to satisfy the scan trigger channel stimulus, 
which causes the channel action to occur when a trigger is detected on line 5. The command 
message for this is: 
scan.trigger.channel.stimulus = digio.trigger[5].EVENT_ID 

 

 Event Associated attribute 

 Scan Ready Event scan.trigger.EVENT_SCAN_READY 

 Scan Start Event scan.trigger.EVENT_SCAN_START 

 Channel Ready Event scan.trigger.EVENT_CHANNEL_READY 

 Scan Complete Event scan.trigger.EVENT_SCAN_COMP 

 Idle Event scan.trigger.EVENT_IDLE 

 
 
 

Scanning operations run through the trigger model, but individual open and close commands have 
no interaction with the trigger model. 

 

Scan and step counts 
When running a scan, it may be necessary to determine the scan progress. You can use 
scan.state() to read the scan and step count to determine the point in the scan table being 
executed. 

"Scan count" represents the number of the current iteration through the scan portion of the trigger 
model. This number does not increment until after the scan begins. Therefore, if an instrument is 
waiting for an input to trigger a scan start, the scan count represents the previous number of scan 
iterations. If no scan has yet to begin, the scan count is zero. 

"Step count" represents the number of times the scan has completed a pass through the channel 
action portion of the trigger model. This number does not increment until after the action completes. 
Therefore, if the instrument is waiting for an input to trigger a channel action, the step count 
represents the previous step. If no step has yet to complete, the step count is zero. If the step count 
has yet to complete the first step in a subsequent pass through a scan, the scan count represents the 
last step in the previous scan pass. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-5 

 

Basic scan procedure 

It is always better to configure all channel attributes before creating a scan. 
You cannot use an external trigger event, like digital I/O, for the channel stimulus setting of the 
trigger model when using the front panel STEP key. For more information, see Scanning and Trigger 
model (on page 3-1). 
 

To perform a scan: 

1. Configure the channels for scanning as needed. 
2. Build the scan list: 

 Front panel: Press the INS key. The steps are executed in the order in which they are 
added. 

 Remote interface: Send the scan.create(), scan.add() , or scan.addimagestep() 
command. 

3. Configure the scan settings (for example, scan count, bypass, mode, and so on). 
4. To start the scan: 

 Front panel: Press the STEP key or the SCAN key and select the BACKGROUND menu 
item. 

 Remote interface: Send the command  scan.execute or scan.background. 
 

5. The trigger model leaves the idle state and performs actions on the channels involved in 
scanning. 
 Front panel: When you press the STEP key, the Models 707B and 708B leave the idle state 

and perform the channel action associated with the first step in the scan list. 
 

While scanning is enabled, pressing most front panel keys will cause the instrument to display error 
code 5522, "Scan Running, Must Abort Scan." 

 

6. The channels are scanned or stepped in the order they were added to the list. 
 Front panel: If you are stepping through the scan, press the STEP key to proceed to the next 

step in the list. 
 Remote interface: You cannot step a scan remotely over the bus. 

7. To abort the scan: 
 Front panel: Press the EXIT key. 
 Remote interface: Use the scan.abort() ICL command. 

 

Even if the scan is aborted, channel states match the aborted state of channels in terms of which are 
closed and opened. 

 

If configured to scan the channels in the scan list again, the Model 707B or 708B waits at the control 
source for another trigger event. After the scan is complete, the Model 707B or 708B outputs another 
trigger pulse, if configured to do so. After all requested scans are complete, the instrument returns to 
the idle state with the channels associated with last scan step closed. 

 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-6 707B-901-01 Rev. B / January 2015 

 

Changing attributes of an existing scan 
When a scan already exists, changing channel attributes also causes the scan to change. Once a 
scan list has been defined, the Model 707B or 708B tries to incorporate your changes into the scan. If 
the change impacts the ability of the scan to function properly (such as deleting something referenced 
by the scan), an error message is logged and the scan list may be cleared. 

 

To see how the scan list may have changed, view the current scan list: 

1. Press the SCAN key when on the main display. 
2. Select the LIST option and press the ENTER key. 
3. Use the navigation wheel or CURSOR keys to scroll through the list. 

 

For remote operation, use the scan.list() function. 

You can clear an existing scan list before making any changes after making a scan list. From the front 
panel, press the SCAN key and select the CLEAR option. For bus operation, use the 
scan.create() function. 

To configure a scan from the SCAN ATTR MENU, while in an active scan list: 
1. Press the CONFIG key. 
2. Press the SCAN key. Modify any of the following menu items as desired: 

 ADD: Displays Use INS key. The related command is scan.add. 
 BYPASS: Enables (ON) or disables (OFF) bypassing the first step of the first scan pass. 

Related command: scan.bypass (on page 7-140). 
 MODE: Sets the scan mode value to one of the following: 

• OPEN_ALL (default setting) 
• OPEN_SELECT 

 Related command: scan.mode (on page 7-145). 
 

3. Press the EXIT key to leave the menu. 
 

Front-panel scanning 
After channels have been added to the scan list, press the SCAN key to display the SCAN ACTION 
MENU. If no scan list exists, pressing the SCAN key will briefly display "No Scan List. Use INSERT to 
add selection."  

 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-7 

 

The menu contains the following items: 

• BACKGROUND: Runs scan list in the background 
• CREATE: Displays Use INS key 
• LIST: Displays the current scan list steps. Turn the navigation wheel to scroll through the list. 
• CLEAR: Clears the existing scan list. 
• RESET: Resets the unit's scan settings, which include scan count, clearing the scan list, and 

scan stimulus settings like scan trigger arm. 

Press the INS key to add the selected channels or pattern to the existing scan list. 

Press the DEL key to remove the selected channels or pattern from the existing scan list. Only the 
first occurrence of the selected item is removed. 

When removing channels, channel patterns are not checked to determine if the channel being 
removed is associated with its image. To remove a channel pattern in a scan list, select the channel 
pattern to be removed, and then press the DEL key. 

Press the STEP key to single step through a scan list. 
 

Foreground and background scan execution 
You can execute a scan in the foreground or background. Background execution allows you to query 
settings. If a scan is running in the foreground, it will need to finish or be aborted before you can 
query any settings. 

When a scan is running in the background, you can send commands to be processed. The 
commands that you can use include most of the command messages that you use to query for 
settings, for example: 
print(scan.state()) 

Most of the commands to change how the instrument is configured will log the following error 
message to the error queue: 
5522, Scan Running, Must Abort Scan 

 

Include multiple channels in a single scan step 
Through the remote control interface, you can use scan.addimagestep to combine a list of 
channels into a scan step.  

The following example creates five scan steps with the indicated channels. 
scan.create() 
scan.addimagestep("1A01, 1B01, 1C03") 
scan.sddimagestep("1A03, 1B03, 1C03") 
scan.addimagestep("1A05, 1B05, 1C03") 
scan.sddimagestep("1A07, 1B07, 1C03") 
scan.addimagestep("1A09, 1B09, 1C03") 

 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-8 707B-901-01 Rev. B / January 2015 

 

Remote interface scanning 

Scan and trigger commands 
The following list contains commands associated with triggers and bus operation scanning: 

• trigger.blender[N].clear() (on page 7-201) 
• trigger.blender[N].orenable (on page 7-202) 
• trigger.blender[N].overrun (on page 7-203) 
• digio.trigger[N].clear() (on page 7-54) 

 

• digio.trigger[N].pulsewidth (on page 7-57) 
• digio.trigger[N].stimulus (on page 7-59) 
• digio.trigger[N].wait() (on page 7-61) 

 

• lan.trigger[N].assert() (on page 7-108) 
• lan.trigger[N].clear() (on page 7-108) 
• lan.trigger[N].overrun (on page 7-113) 
• lan.trigger[N].stimulus (on page 7-115) 
• lan.trigger[N].wait() (on page 7-117) 
• scan.add() (on page 7-136) 
• scan.background() (on page 7-139) 
• scan.bypass (on page 7-140) 
• scan.create() (on page 7-141) 
• scan.execute() (on page 7-142) 
• scan.list() (on page 7-143) 

 

• scan.mode (on page 7-145) 
• scan.reset() (on page 7-146) 
• scan.scancount (on page 7-147) 
• scan.state() (on page 7-148) 
• scan.stepcount (on page 7-149) 
• scan.trigger.arm.clear() (on page 7-149) 
• scan.trigger.arm.set() (on page 7-150) 
• scan.trigger.arm.stimulus (on page 7-150) 
• scan.trigger.channel.clear() (on page 7-152) 

 

• scan.trigger.channel.set() (on page 7-152) 
• scan.trigger.channel.stimulus (on page 7-153) 
• scan.trigger.clear() (on page 7-155) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-9 

 

Scanning examples 
Assume you have a 7072 card installed in slot 1 of your instrument and you want to scan column 5 on 
rows 1 to 3. To create this scan, send the following command: 
scan.create("1A05, 1B05, 1C05")  

 

 To see the scan list generated from this command, send: 
print(scan.list()) 

 

The following will be output: 
 Init) OPEN... 
  1) STEP: 1A05 
     CLOSE: 1A05  
  2) STEP: 1B05 
     OPEN: 1A05  
     CLOSE: 1B05  
  3) STEP: 1C05 
     OPEN: 1B05  
     CLOSE: 1C05  

 

This indicates that the scan list includes three steps. For step 1, the running scan will close "1A05".  
For step 2, it opens "1A05" and closes "1B05". For step 3, it will open "1B05" and close "1C05". 

The following table illustrates how scan count works with this scan list to determine total number of 
channel closures during a scan. 

 

 

How scan count works with the scan list 

Number of steps Scan count value Total number of step channel closures 

3 1 (default) 3 (each step channel once – 1A05, 1B05, 1C05) 
3 2 6 (each step channel twice – 1A05, 1B05, 1C05, then 

1A05, 1B05, 1C05) 
3 3 9 (each step channel three times –  1A05, 1B05, 

1C05 then 1A05, 1B05, 1C05 then 1A05, 1B05, 
1C05) 

scan.stepcount scan.scancount scan.stepcount X scan.scancount 
 

Therefore, scan count represents how many times to loop on the total number of steps in a defined 
scan list. 

If you want to pace the steps of closing and opening channels by detecting a trigger on digio trigger 
line 3, the following flow chart indicates the sequence of events to achieve this. This example uses 
the same scan list as above and uses a scan count of 3. 

As the flow chart below shows, to transition between start of scan to step 1, step 1 and step 2, step 2 
and step 3, a trigger needs to be detected on digio trigger line 3. At the end of step 3, if the scan 
count has reached three, the scan completes. If the scan count hasn't reached 3 then, loop back 
around to repeat steps 1 to 3 again. 

 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-10 707B-901-01 Rev. B / January 2015 

 

  
 

The following represents a script you can enter using the TSB Embedded page on the web to 
experiment with the scan points discussed above. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-11 

 

  

reset()   Reset the instrument 
scan.add("1A05, 1B05, 1C05") Create a three channel scan list 
digio.trigger[3].mode = digio.TRIG_FALLING Detect falling edges on digio trigger line 3  
scan.trigger.channel.stimulus = 
   digio.trigger[3].EVENT_ID 

Configure digio trigger line 3 to pace the 
scan sequence  

scan.scancount = 3  Set the scan count to 3  
print(scan.list())  Show the configured scan list 

delay(5)  Delay 5 seconds to allow viewing of scan list 

scan.background()  Start the scan and let if run in the 
background 

ScanState, ScanCount, StepCount = scan.state() Get the current scan state information 

print(ScanState, "", ScanCount , "", StepCount)  Show the state of scanning 

delay(3) Delay 3 seconds to allow viewing of state 

print("state", " scan count", "step count") Header for output data from for loop 

for x = 1, (scan.scancount * scan.stepcount) do Loop for scan count times step count to step 
the scan sequence 

   digio.trigger[3].assert()  Simulate the trigger occurring on digio trigger 
line 3 

   ScanState, ScanCount, StepCount = scan.state() Get the current scan state information 

   print(ScanState, "", ScanCount, "", StepCount) Show the state of scanning 

   delay(3) Delay 3 seconds to allow viewing of state 

end  
 

On the TSB Embedded page, click Save Script to save the script. For example, name the script 
ScanExample. In the User Scripts list, select ScanExample. Click Run. The output of the script is: 

 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-12 707B-901-01 Rev. B / January 2015 

 

 

Init) OPEN... 
  1) STEP: 1A05 
    CLOSE: 1A05  
  2) STEP: 1B05 
      OPEN: 1A05  
     CLOSE: 1B05  
  3) STEP: 1C05 
      OPEN: 1B05  
     CLOSE: 1C05 

 

2.000000000e+000      1.000000000e+000      0.000000000e+000 Shows scan is running 
(state = 2) and no steps 
have completed for scan 
count of 1 

state      scan count    step count  

2.000000000e+000      1.000000000e+000      1.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 1 for scan 
count of 1 

2.000000000e+000      1.000000000e+000      2.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 2 for scan 
count of 1 

 

2.000000000e+000      1.000000000e+000      3.000000000e+000  
Shows scan is running 
(state = 2) and just 
completed step 3 for scan 
count of 1 

2.000000000e+000      2.000000000e+000      1.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 1 for scan 
count of 2 

2.000000000e+000      2.000000000e+000      2.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 2 for scan 
count of 2 

2.000000000e+000      2.000000000e+000      3.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 3 for scan 
count of 2 

2.000000000e+000      3.000000000e+000      1.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 1 for scan 
count of 3 

2.000000000e+000      3.000000000e+000      2.000000000e+000 Shows scan is running 
(state = 2) and just 
completed step 2 for scan 
count of 3 

6.000000000e+000      3.000000000e+000      3.000000000e+000 Shows scan has 
completed (state = 6) and 
just completed step 3 for 
scan count of 3 

  



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-13 

 

For more examples of using scanning and triggering, see the Models 707B and 708B User's Manual, 
section "Using a Series 2600 with your Model 707B or 708B." 

 

Hardware trigger modes 
Use the hardware trigger modes to integrate Keithley Instruments and non-Keithley instruments into 
an efficient test system. The hardware synchronization lines are classic trigger lines. The Model 707B 
or 708B contains 14 digital I/O lines and three TSP-Link synchronization lines that you can use for 
input or output triggering. The following table provides a summary for each hardware trigger mode. 

 

 

Trigger mode Output Input Notes 
 Unasserted Asserted Detects  

Bypass N/A N/A N/A Use the writebit and writeport 
commands for direct line control 

Either edge High Low Either Short input pulses can cause a trigger 
overrun 

Falling edge High Low Falling  

Rising edge N/A N/A N/A • The programmed state of the line 
determines if the behavior is similar 
to RisingA or RisingM 

• High similar to RisingA 
• Low similar to RisingM 

 

Rising A  High Low Rising  

RisingM Low High None  
Synchronous High 

latching 
Low Falling • Behaves similar to SynchronousA 

• Trigger overrun detection is disabled 
• To mirror the SynchronousA trigger 

mode, set the pulse duration to 1 µs 
or any small nonzero value 

SynchronousA High 
latching 

High Falling Ignores the pulse duration 

SynchronousM High Low Rising  
 

Each trigger mode controls the input trigger detection and output trigger generation. The input 
detector monitors for and detects all edges, even if the node that generates the output trigger causes 
the edge. 

A trigger overrun generates if an input trigger is received before the previous input trigger processes. 
To determine if a trigger overrun has occurred, reference the trigger overrun attributes. 

For additional information on the hardware trigger modes, see TSP commands. 
 

To have direct control of the line state, use the bypass trigger mode. 
 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-14 707B-901-01 Rev. B / January 2015 

 

Falling edge trigger mode 
The falling edge trigger mode generates low pulses and detects all falling edges. The following 
graphic illustrates the characteristics for the falling edge input trigger. 

Figure 63: Falling edge input trigger 

 

Input characteristics: 

• Detects all falling edges as input triggers 

Figure 64: Falling edge output trigger 

 

Output characteristics: 

• When the trigger is asserted, it generates a low pulse for the programmed pulse duration. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-15 

 

Rising edge master trigger mode 
Use the rising edge master trigger mode (RisingM) to synchronize with non-Keithley Instruments that 
require a high pulse. Input trigger detection is not available in this trigger mode. You can use the 
RisingM trigger mode to generate rising edge pulses. 

The RisingM trigger mode does not function properly if the line is driven low by an external drive. 

Figure 65: RisingM output trigger 

 
 

Rising edge acceptor trigger mode 
The rising edge acceptor trigger mode (RisingA) generates a low pulse and detects rising edge 
pulses. The following graphic displays the RisingA input trigger. 

 

Figure 66: RisingA input trigger 

 
 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-16 707B-901-01 Rev. B / January 2015 

 

Input characteristics: 

• All rising edges generate an input event. 
 

Figure 67: RisingA output trigger 

 
 

Output characteristics: 

• When the trigger is asserted, generates a low pulse that is similar to the falling edge trigger mode. 
 

Either edge trigger mode 
The either edge trigger mode generates a low pulse and detects both rising and falling edges. 

Figure 68: Either edge input trigger 

 

Input characteristics: 

• All rising or falling edges generate an input trigger event 
 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-17 

 

Figure 69: Either edge output trigger 

 

Output characteristics: 

• When the trigger is asserted, it generates a low pulse that is similar to the falling edge trigger mode. 
 

Understanding synchronous triggering modes 
Use the synchronous triggering modes to implement bidirectional triggering, to wait for one node, or 
to wait for a collection of nodes to complete all triggered actions. 

All non-Keithley instrumentation must have a trigger mode that functions similar to the SynchronousA 
or SynchronousM trigger modes. 

To use synchronous triggering, configure the triggering master to the SynchronousM trigger mode or 
the non-Keithley equivalent. Configure all other nodes in the test system to SynchronousA trigger 
mode or a non-Keithley equivalent. 

 

Synchronous master trigger mode 
Use the synchronous master trigger mode (SynchronousM) to generate falling edge output triggers, 
to detect the rising edge input triggers, and to initiate an action on one or more external nodes with 
the same trigger line. 

In this mode, the output trigger consists of a low pulse. All non-Keithley instruments attached to the 
synchronization line in a trigger mode equivalent to SynchronousA must latch the line low during the 
pulse duration. 

To use the SynchronousM trigger mode, configure the triggering master as SynchronousM and then 
configure all other nodes in the test system as Synchronous, SynchronousA, or to the non-Keithley 
equivalent. 

Use the SynchronousM trigger mode to receive notification when the triggered action on all nodes is 
complete. 

 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-18 707B-901-01 Rev. B / January 2015 

 

Figure 70: SynchronousM input trigger 

 
 

Input characteristics: 

• All rising edges are input triggers. 
• When all external drives release the physical line, the rising edge is detected as an input trigger. 
• A rising edge cannot be detected until all external drives release the line and the line floats high. 

 

Figure 71: SynchronousM output trigger 

 

Output characteristics: 

• When the trigger is asserted, it generates a low pulse that is similar to the Falling Edge trigger mode 
 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-19 

 

Synchronous acceptor trigger mode 
Use the synchronous acceptor trigger mode (SynchronousA) with the SynchronousM trigger mode. 
The roles of the internal and external drives are reversed in the SynchronousA trigger mode. 

Figure 72: SynchronousA input trigger 

 

Input characteristics: 

• The falling edge is detected as the external drive pulses the line low, and the internal drive latches the 
line low 

Figure 73: SynchronousA output trigger 

 

Output characteristics: 

• The physical line state does not change until all drives (internal and external) release the line. 
 

Synchronous trigger mode 
The synchronous trigger mode is a combination of SynchronousA and SynchronousM trigger modes. 

The SynchronousA and SynchronousM trigger modes provide additional flexibility. 
 



Section 3: Functions and features Models 707B and 708B Switching Matrix Reference Manual 
 

3-20 707B-901-01 Rev. B / January 2015 

 

Figure 74: Synchronous input trigger 

 
 

Input characteristics: 

• The falling edge generates an input event and latches the internal drive low. 

Figure 75: Synchronous output trigger 

 
 

Output characteristics: 

• When the trigger is asserted, it generates a low pulse for the programmed pulse duration If the line is 
latched low, a falling edge does not occur. 

• When the trigger is asserted and the line is latched low, the pulse duration is enforced, and then the 
internal line drive is released. 

• A normal falling edge pulse generates when the internal drive is not latched low and the trigger is 
asserted. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 3: Functions and features 
 

707B-901-01 Rev. B / January 2015 3-21 

 

Events 
Event detectors monitor an event. They have one input signal (the stimulus), which is the event that 
they monitor (in some cases, the stimulus is an action in the system, like a timer expiring or a key 
press). They have two optional output signals (see figure below). "Detected" reflects the detection 
state of the event detector. If an event was detected, the detected signal is asserted. Event detectors 
are usually coupled to something that consumes the events. When an event is consumed, the 
detected state of the event detector is reset. Should an event be detected while the event detector is 
in the detected state, the overrun signal will be asserted. You can only clear the overrun signal by 
sending a TSP command. 

 

Figure 76: Event detector 

 
 

Event blenders 
Advanced event handling requires a way to wait for one of several events (or all of several events). 
An event blender provides for this combining or blending of events. An event blender can combine up 
to four events in either an "or" mode or an "and" mode. When in "or" mode, any one of the input 
events will cause an output event to be generated. When in "and" mode, all the input events must 
occur before an output event is generated.  

When operating in "and" mode, if an event is detected more than once before all events necessary for 
the generation of an output event, an action overrun will be generated. When operating in "or" mode, 
an action overrun will be generated when two or more source events are detected simultaneously. 

Event blenders each have an associated event detector that can be accessed through script control. 
Event blenders can only be accessed over a remote interface (no front panel control is available). The 
following remote commands provide additional information on available blenders: 
trigger.blender[N].clear() (on page 7-201) 
trigger.blender[N].orenable (on page 7-202) 
trigger.blender[N].overrun (on page 7-203) 
trigger.blender[N].stimulus[M] (on page 7-204) 
trigger.blender[N].wait() (on page 7-205) 

 

 





 

 

In this section: 

Theory of operation .................................................................. 4-1 

 
 

Theory of operation 

Models 707B and 708B theory of operations overview 
The Models 707B and 708B are composed of several components assembled into an aluminum 
frame. The Model 707B supports the operation of up to six relay matrix cards; the Model 708B 
supports the operation of a single relay matrix card. Each of the components is briefly described 
below. 

 

Mainframe 
Figure 77: Model 707B mainframe block diagram 

 
 

Section 4 

Theory of operation 



Section 4: Theory of operation Models 707B and 708B Switching Matrix Reference Manual 
 

4-2 707B-901-01 Rev. B / January 2015 

 

 

Figure 78: Model 708B mainframe block diagram 

 
 

Important test system safety information 
This product is sold as a stand-alone instrument that may become part of a system that could contain 
hazardous voltages and energy sources. It is the responsibility of the test system designer, integrator, 
installer, maintenance personnel, and service personnel to make sure the system is safe during use 
and is operating properly. 

You must also realize that in many test systems a single fault, such as a software error, may output 
hazardous signal levels even when the system indicates that there is no hazard present. 

 

It is important that you consider the following factors in your system design and use: 

• The international safety standard IEC 61010-1 defines voltages as hazardous if they exceed 
30 V rms and 42.4 V peak or 60 V dc for equipment rated for dry locations. Keithley Instruments, 
Inc. products are only rated for dry locations. 

• Read and comply with the specifications of all instruments in the system. The overall allowed 
signal levels may be constrained by the lowest rated instrument in the system. For example, if 
you are using a 500 volt power supply with a 300 V dc rated switch, the maximum allowed 
voltage in the system is only 300 V dc. 

• Make sure any test fixture connected to the system protects the operator from contact with 
hazardous voltages, hot surfaces, or sharp objects. This may be accomplished by shields, 
barriers, insulation, safety interlocks, or the like. 

• Cover the device under test (DUT) to protect an operator from flying debris in the event of a 
system or DUT failure. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 4: Theory of operation 
 

707B-901-01 Rev. B / January 2015 4-3 

 

• Double insulate all electrical connections that an operator could touch. Double insulation ensures 
the operator is still protected even if one insulation layer fails. Refer to IEC 61010-1 for specific 
requirements. 

• Make sure all connections are behind a locked cabinet door or other barrier. This protects the 
system operator from accidentally removing a connection by hand and exposing hazardous 
voltages. 

• Use high reliability fail-safe interlock switches to disconnect power sources when a test fixture 
cover is opened. 

• Where possible, use automatic handlers so operators are not required to access the DUT or other 
potentially hazardous areas. 

• Provide training to all users of the system so they understand all potential hazards and know how 
to protect themselves from injury. 

• In many systems, during power on, the outputs may be in an unknown state until they are 
properly initialized. Make sure the design can tolerate this situation without causing operator 
injury or hardware damage. 

 

Of course, read and follow all safety warnings provided with the specific instruments to keep system 
users safe. 

For Model 707B or 708B, also see Safety Precautions (on page 1-1). 
 

Instrument fan (Model 707B only) 
The Model 707B includes an internal fan that operates continuously when power is applied to the 
mainframe. The fan keeps the internal power supply and other electronics cool during operation. 

 

AC power entry 
The Model 707B or 708B is powered from standard AC mains supply through a power entry module 
that is located on the rear panel of the instrument. 

 

Universal power supply 
All the power for the internal electronics and relay cards is provided by a switched-mode power 
supply which is located inside the mainframe. The power supply offers improved power efficiency 
compared to earlier versions of the Models 707A and 708A products. 

Total power consumption requirements are listed on the rear panel of the instrument. 
 

Microprocessor board 
At the heart of the Model 707B or 708B instrument is a microprocessor board that processes all 
communications. It outputs information and status messages, and executes operational commands 
supplied by the operator. 

For information on the commands that can be sent to the instrument, see Introduction to TSP 
operation (on page 5-1, on page 5-1). 

 



Section 4: Theory of operation Models 707B and 708B Switching Matrix Reference Manual 
 

4-4 707B-901-01 Rev. B / January 2015 

 

Remote communications interfaces 
You can operate the Model 707B or 708B over one of several standard remote interfaces. The rear 
panel includes connectors for these communication interfaces: 

• Universal Serial Bus (USB) 
• Local area network (LAN) 
• General Purpose Interface Bus (GPIB or IEEE-488) 

 

Trigger and control interfaces 
You can use rear panel connections to control external digital circuits and instruments that are 
connected with TSP. See Digital I/O port (on page 2-7) and Connect the TSP-Link cable (on page 2-
6). 

 

Backplane 
The Model 707B or 708B backplane is the interface between the installed relay cards. The relay card 
interfaces with the backplane through a communication and power connector a separate connector 
for signal routing. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 4: Theory of operation 
 

707B-901-01 Rev. B / January 2015 4-5 

 

Figure 79: Model 707B backplane 

 
 

 
 

Front panel 
The front panel of the Keithley Instruments Model 707B or 708B contains the following items: 

• The display 
• The crosspoint display (Model 707B only) 
• The keys and navigation wheel  
• The LAN status indicator 
• The POWER button 

You can use the keys, displays, and the navigation wheel  to change the selected channel or 
channel pattern. You can also use them to access, view, and edit the menu items. The crosspoint 
display on the Model 707B shows you which channels are opened and closed. 

The small display is a two-line vacuum fluorescent display (VFD). 
 



Section 4: Theory of operation Models 707B and 708B Switching Matrix Reference Manual 
 

4-6 707B-901-01 Rev. B / January 2015 

 

Upper crosspoint display (Model 707B only) 
The larger upper display on the Model 707B mainframe provides a visual means of determining the 
relay status of each card slot in the instrument at any given time. It also shows the label names for 
each row and column of the given slot.  

The crosspoint display may be operated from the navigation wheel  to scroll through the slots 
displaying the status. You can use the navigation wheel  to select channels for relay open or 
closures or other actions. 

For details on indicators and additional options, see Crosspoint display (Model 707B only) (on page 
2-14). 

 

Figure 80: Model 707B crosspoint display block diagram 

 
 

Description of the crosspoint display components 

The front panel of the Model 707B is composed of two main display components: a vacuum 
fluorescent display (VFD) and a 12 x 12 LED matrix display, called the crosspoint display, that shows 
the relay status for each of the slots. 

The block diagram shows only the matrix display. Its constituent components are described below. 
 

Microcontroller 

The microcontroller receives commands from the main controller and updates the row and column 
labels. It also generates the pulse-width modulated (PWM) signals for operating the 12 x 12 LED 
matrix. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 4: Theory of operation 
 

707B-901-01 Rev. B / January 2015 4-7 

 

Row and column labels 

The row and column labels are updated by writing to the devices serially. They handle their own 
brightness and refresh controls, alleviating the main microcontroller from performing these tasks. As a 
result, these are only updated when the data changes and a command from the instrument is issued 
to update the label. 

 

12 x 12 LED matrix 

The 12 x 12 matrix array of LEDs is driven by PWM signals that cause the intensity of the LED to be 
bright or dim based on the appropriate setting from the instrument. 

Each row and column is updated sequentially. The entire display has a refresh rate of approximately 
60 Hz. The time domain details of display refreshing are shown below. 

Figure 81: Model 707B display refresh 

 
 

Slot indicators 

The slot LEDs are treated the same as the matrix LEDs, as additional 13th and 14th columns. 
 



Section 4: Theory of operation Models 707B and 708B Switching Matrix Reference Manual 
 

4-8 707B-901-01 Rev. B / January 2015 

 

Display watchdog 

Once the display tasks are started, if the microcontroller stops refreshing, the watchdog circuit shuts 
off the column drivers to preserve the life of the LEDs. 

The display watchdog is part of the standard display test (see Testing the display, keys, and channel 
matrix (on page 8-9) for information). 

If the watchdog shuts down the display, the first several row labels show “SLOT GRID LEDS OFF.” 
 

Description of basic display operation 

This display board is a subordinate device to the microprocessor board. 

The microprocessor board communicates commands to change the state of the matrix or update the 
row and column labels. 

The display board processes these commands independently. It also refreshes the display and 
performs other tasks. When a display command is issued, the microcontroller processes it to update 
the display. The task of refreshing rows and PWM generation is done in an interrupt-driven routine to 
ensure predictable timing. 

 

 



 

 

In this section: 

Introduction to TSP operation................................................... 5-1 
About TSP commands ............................................................. 5-3 
Overview of instrument drivers ............................................... 5-16 
Migrating from Models 707A and 708A .................................. 5-19 

 
 

Introduction to TSP operation 
Instruments that are Test Script Processor (TSP®) enabled operate like conventional instruments by 
responding to a sequence of commands sent by the controller. You can send individual commands to 
the TSP-enabled instrument the same way you would when using any other instrument.  

Unlike conventional instruments, TSP-enabled instruments can execute automated test sequences 
independently, without an external controller. You can load a series of TSP commands into the 
instrument . You can store these commands as a script that can be run later by sending a single 
command message to the instrument. 

You do not have to choose between using conventional control or script control. You can combine 
these forms of instrument control in the way that works best for your test application. 

 

Controlling the instrument by sending individual command messages 
The simplest method of controlling an instrument through the communication interface is to send it a 
message that contains remote commands. You can use a test program that resides on a computer 
(the controller) to sequence the actions of the instrument. 

TSP commands can be function-based or attribute-based. Function-based commands are commands 
that control actions or activities. Attribute-based commands define characteristics of an instrument 
feature or operation. 

Constants are commands that represent fixed values.  
 

Functions 
Function-based commands control actions or activities. A function-based command performs an 
immediate action on the instrument. 

Each function consists of a function name followed by a set of parentheses ( ). You should only 
include information in the parentheses if the function takes a parameter. If the function takes one or 
more parameters, they are placed between the parentheses and separated by commas. 

 

Section 5 

Introduction to TSP operation 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-2 707B-901-01 Rev. B / January 2015 

 

Example 1 
 

beeper.beep(0.5, 2400) 
delay(0.250) 
beeper.beep(0.5, 2400) 

Emit a double-beep at 2400 Hz. The sequence is 
0.5 s on, 0.25 s off, 0.5 s on. 

 
 

Example 2 

You can use the results of a function-based command directly or assign variables to the results for 
later access. The following code defines x and prints it. 
 

x = math.abs(-100) 
print(x) 

Output: 
100 

 

Attributes 
Attribute-based commands are commands that set the characteristics of an instrument feature or 
operation. For example, some characteristics of TSP-enabled instruments are the model number 
(localnode.model) and the brightness of the front-panel display (display.lightstate). 

Attributes can be read-only, read-write, or write-only. They can be used as a parameter of a function 
or assigned to another variable. 

 

To set the characteristics, attribute-based commands define a value. For many attributes, the value is 
in the form of a number or a predefined constant. 

Example 1: Set an attribute using a number 
 

beeper.enable = 0 This attribute controls the beeps that occur when 
front-panel controls are selected. Setting this attribute to 0 
turns off the beeper. 

 

Example 2: Set an attribute using a constant 
 

format.data = format.REAL64 Using the constant REAL64 sets the print format 
to double precision floating point format. 

 

To read an attribute, you can use the attribute as the parameter of a function, or assign it to another 
variable. 

Example 3: Read an attribute using a function 
 

print(format.data) Reads the data format by passing the attribute 
to the print function. If the data format is set to 
3, the output is: 
3.0000000e+00 
This shows that the data format is set to double 
precision floating point. 

Example 4: Read an attribute using a variable 
 

fd = format.data This reads the data format by assigning the 
attribute to a variable named fd. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-3 

 

Queries 
Test Script Processor (TSP®) enabled instruments do not have inherent query commands. Like any 
other scripting environment, the print() and printnumber() commands generate output in the 
form of response messages. Each print() command creates one response message. 

Example 
 

x = 10 
print(x) 

Example of an output response message: 
1.0000000e+01 
Note that your output may be different if you set your ASCII 
precision setting to a different value. 

 

Data retrieval commands 
You can send data retrieval commands that return a comma-delimited string. For example, 
print(memory.available()) returns the amount of memory that is available in the instrument. 

The comma-delimited string that is returned starts with the lowest channel and goes to the highest 
channel on Slot 1. It then lists each subsequent slot until the highest slot is reached. 

 

Information on scripting and programming 
If you need information about using scripts with your TSP-enabled instrument, see Fundamentals of 
scripting for TSP (on page 6-1). 

If you need information about using the Lua programming language with the instrument, see 
Fundamentals of programming for TSP (on page 6-10). 

 

About TSP commands 
This section contains an overview of the TSP commands for the instrument. The commands are 
organized into groups, with a brief description of each group. Each section contains links to the 
detailed descriptions for each command in the TSP command reference section of this 
documentation (see TSP commands). 

 

Beeper control 
The beeper commands allow you to enable or disable and sound the instrument beeper. 

beeper.beep() (on page 7-8) 
beeper.enable (on page 7-8) 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-4 707B-901-01 Rev. B / January 2015 

 

Bit manipulation and logic operations 
The bit functions perform bitwise logic operations on two given numbers, and bit operations on one 
given number. Logic and bit operations truncate the fractional part of given numbers to make them 
integers. 

Logic operations 

The bit.bitand(), bit.bitor(), and bit.bitxor() functions in this group perform bitwise 
logic operations on two numbers. The Test Script Processor (TSP®) scripting engine performs the 
indicated logic operation on the binary equivalents of the two integers. This bitwise logic operation is 
performed on all corresponding bits of the two numbers. The result of a logic operation is returned as 
an integer. 

 

Bit operations 

The rest of the functions in this group are used for operations on the bits of a given number. These 
functions can be used to: 

• Clear a bit 
• Toggle a bit 
• Test a bit 
• Set a bit or bit field 
• Retrieve the weighted value of a bit or field value 

All these functions use an index parameter to specify the bit position of the given number. The least 
significant bit of a given number has an index of 1, and the most significant bit has an index of 32. 

 

The Test Script Processor (TSP) scripting engine stores all numbers internally as IEEE Std 754 
double-precision floating point values. The logical operations work on 32-bit integers. Any fractional 
bits are truncated. For numbers larger than 4294967295, only the lower 32 bits are used. 
 

bit.bitand() (on page 7-9) 
bit.bitor() (on page 7-9) 
bit.bitxor() (on page 7-10) 
bit.clear() (on page 7-11) 
bit.get() (on page 7-11) 
bit.getfield() (on page 7-12) 
bit.set() (on page 7-13) 
bit.setfield() (on page 7-14) 
bit.test() (on page 7-14) 
bit.toggle() (on page 7-15) 

 

channel functions and attributes 
 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-5 

 

About channel commands 
Matrix card channel specifiers 

The channels on the matrix cards are referred to by their slot, bank, row, and column numbers: 

• Slot number: The number of the slot in which the card is installed. 
• Bank number: The bank number, if used by your card. See your card documentation. 
• Row number: The row number is either 1 to 8 or A to Z. See your card documentation. 
• Column number: Always two digits. For columns greater than 99, use A, B, C and so on to 

represent 10, 11, 12, …; the resulting sequence is: 98, 99, A0, A1, …, A8, A9, B0, B1, … 

 
Matrix channel examples 

Specifier Slot 
number 

Bank 
number 

Row 
number 

Column 
number 

1A05 or 1105* 1 N/A 1 05 

1C05 1 N/A 3 05 
3C12 3 N/A 3 12 
* Specifier depends on card type. See your card documentation for 
detail. 

  
 
 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-6 707B-901-01 Rev. B / January 2015 

 

Channel 

Channel functions and attributes allow you to adjust, select, open, and close channels. You can also 
set common channel attributes and set up channel patterns. 

The channel functions and attributes are: 

channel.clearforbidden() (on page 7-16) 
channel.close() (on page 7-17) 
channel.connectrule (on page 7-18) 
channel.connectsequential (on page 7-19) 
channel.createspecifier() (on page 7-20) 
channel.exclusiveclose() (on page 7-22) 
channel.exclusiveslotclose() (on page 7-23) 
channel.getclose() (on page 7-24) 
channel.getcount() (on page 7-25) 
channel.getdelay() (on page 7-26) 
channel.getforbidden() (on page 7-27) 
channel.getlabel() (on page 7-28) 
channel.getlabelcolumn() (on page 7-30) 
channel.getlabelrow() (on page 7-31) 
channel.getstate() (on page 7-32) 
channel.gettype() (on page 7-33) 
channel.open() (on page 7-33) 
channel.pattern.catalog() (on page 7-35) 
channel.pattern.delete() (on page 7-36) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 
channel.pattern.snapshot() (on page 7-39) 
channel.reset() (on page 7-40) 
channel.setdelay() (on page 7-41) 
channel.setforbidden() (on page 7-42) 
channel.setlabel() (on page 7-43) 
channel.setlabelcolumn() (on page 7-44) 
channel.setlabelrow() (on page 7-46) 

 

Return value 

Several of the channel functions return a value for specified channels and channel patterns. 

The return value for these functions is a string containing a list of comma-delimited return items. The 
channelList argument of the remote command determines the number and order of these returned 
items. 

When the channelList parameter for these functions is "slotX", the response first lists the 
channels starting from lowest to highest. More specifically, the channels are returned in numeric 
order. 

When the channelList parameter for these functions is "allslots", the response starts with slot 
1 and increases to slot 6 for the Model 707B. The Model 708B has only one slot, thus "allslots" is 
the same as "slot1" for this model. Each slot is processed completely before going to the next. 
Therefore, all slot 1 channels are listed before slot 2 channels. 

When the response is numeric, but in string format, use the tonumber() function to convert the 
string to a number. For example, sending these commands: 
x = tonumber("1403") 
print(x) 

Results in: 
1.403000000e+03 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-7 

 

When the response is a comma-delimited string, the individual return items can be identified by 
iterating through the list using the comma delimiters. For example, the Lua code below will start at the 
beginning of a string and break the string into individual items at each comma. The tonumber() 
function is used on each item to determine if it is a number or not. In either case, the value is printed. 
index1 = 1 
index2 = 1 
text = "123,abc,hello,4.56" 
endIndex = string.len(text) 
while index2 ~= endIndex do 
   index2 = string.find(text, ",", index1) 
   if not index2 then 
      index2 = endIndex 
   end 
 
   subString = string.sub(text, index1, index2 - 1) 
   if not number(subString) then 
      print(subString) 
   else 
      print(tonumber(subString)) 
   end 
   index1 = index2 + 1 
end 

 

createconfigscript function 
This function captures the present settings of the instrument. 

createconfigscript() (on page 7-47) 
 

Data queue 
Use the data queue commands to: 

• Share data between test scripts running in parallel 
• Access data from a remote group or a local node on a TSP-Link® network at any time 

The data queue in the Test Script Processor (TSP®) scripting engine is first-in, first-out (FIFO). 

You can access data from the data queue even if a remote group or a node has overlapped 
operations in process. 

dataqueue.add() (on page 7-48) 
dataqueue.CAPACITY (on page 7-49) 
dataqueue.clear() (on page 7-49) 
dataqueue.count (on page 7-50) 
dataqueue.next() (on page 7-51) 

 

delay function 
This function is used to hold up instrument operation for a specified period of time. It is typically used 
to soak a device at a specific voltage or current for a period of time. 
delay() (on page 7-52) 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-8 707B-901-01 Rev. B / January 2015 

 

Digital I/O 
The digital I/O port of the instrument can control external circuitry (such as a component handler for 
binning operations). 

The I/O port has 14 lines. Each line can be at TTL logic state 1 (high) or 0 (low). See the pinout 
diagram in Digital I/O port (on page 2-7) for additional information. 

There are commands to read and write to each individual bit, and commands to read and write to the 
entire port. 

digio.readbit() (on page 7-52) 

digio.readport() (on page 7-53) 
digio.trigger[N].assert() (on page 7-53) 
digio.trigger[N].clear() (on page 7-54) 
digio.trigger[N].EVENT_ID (on page 7-54) 
digio.trigger[N].mode (on page 7-55) 
digio.trigger[N].overrun (on page 7-57) 
digio.trigger[N].pulsewidth (on page 7-57) 
digio.trigger[N].release() (on page 7-58) 
digio.trigger[N].reset() (on page 7-58) 
digio.trigger[N].stimulus (on page 7-59) 
digio.trigger[N].wait() (on page 7-61) 
digio.writebit() (on page 7-61) 
digio.writeport() (on page 7-62) 
digio.writeprotect (on page 7-63) 

 

Display 
display.clear() (on page 7-63) 
display.getannunciators() (on page 7-64) 
display.getcursor() (on page 7-65) 
display.getlastkey() (on page 7-66) 
display.gettext() (on page 7-67) 
display.inputvalue() (on page 7-68) 
display.loadmenu.add() (on page 7-70) 
display.loadmenu.catalog() (on page 7-71) 
display.loadmenu.delete() (on page 7-72) 
display.locallockout (on page 7-72) 
display.menu() (on page 7-73) 
display.prompt() (on page 7-74) 
display.screen (on page 7-75) 
display.sendkey() (on page 7-76) 
display.setcursor() (on page 7-77) 
display.settext() (on page 7-79) 
display.trigger.clear() (on page 7-80) 
display.trigger.EVENT_ID (on page 7-80) 
display.waitkey() (on page 7-81) 

 

Error queue 
When errors and events occur, the error and status messages are placed in the error queue. Use the 
error queue commands to request error and status message information. 

errorqueue.clear() (on page 7-82) 
errorqueue.count (on page 7-83) 
errorqueue.next() (on page 7-83) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-9 

 

eventlog functions and attributes 
The functions and attributes in this group control the event log. 

eventlog.all() (on page 7-84) 
eventlog.clear() (on page 7-85) 
eventlog.count (on page 7-86) 
eventlog.enable (on page 7-86) 
eventlog.next() (on page 7-87) 
eventlog.overwritemethod (on page 7-88) 

 

exit function 
Use this function from in your script to terminate it. 

exit() (on page 7-88) 
 

Queries and response messages 
You can use the print(), printbuffer(), and printnumber() functions to query the 
instrument and generate response messages. The format attributes control how the data is formatted 
for the print functions used. 

The localnode commands determine if generated errors are automatically sent and if prompts are 
generated. 

format.asciiprecision (on page 7-89) 
format.byteorder (on page 7-89) 
format.data (on page 7-90) 
localnode.prompts (on page 7-123) 
localnode.prompts4882 (on page 7-124) 
localnode.showerrors (on page 7-127) 
print() (on page 7-131) 
printbuffer() (on page 7-132) 
printnumber() (on page 7-134) 

 

GPIB 
These commands store the GPIB address and indicate whether GPIB communication is enabled. 

gpib.address (on page 7-92) 
 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-10 707B-901-01 Rev. B / January 2015 

 

LAN and LXI 
The LAN commands have options that allow you to review and configure network settings. 

The lan.config.* commands allow you to configure LAN settings over the remote interface. Note 
that you must send lan.applysettings() for the configuration settings to take effect. 

The lan.status.* commands help you determine the status of the LAN. 

The lan.trigger[N].* commands allow you to set up and assert trigger events that are sent over 
the LAN. 

Other LAN commands allow you to reset the LAN, restore defaults, check LXI domain information, 
and enable or disable the Nagle algorithm. 

lan.applysettings() (on page 7-93) 
lan.config.dns.address[N] (on page 7-94) 
lan.config.dns.domain (on page 7-95) 
lan.config.dns.dynamic (on page 7-95) 
lan.config.dns.hostname (on page 7-96) 
lan.config.dns.verify (on page 7-97) 
lan.config.gateway (on page 7-97) 
lan.config.ipaddress (on page 7-98) 
lan.config.method (on page 7-98) 
lan.config.subnetmask (on page 7-99) 
lan.lxidomain (on page 7-100) 
lan.nagle (on page 7-100) 
lan.reset() (on page 7-101) 
lan.restoredefaults() (on page 7-101) 
lan.status.dns.address[N] (on page 7-102) 
lan.status.dns.name (on page 7-102) 
lan.status.duplex (on page 7-103) 
lan.status.gateway (on page 7-103) 
lan.status.ipaddress (on page 7-104) 
lan.status.macaddress (on page 7-104) 
lan.status.port.dst (on page 7-105) 
lan.status.port.rawsocket (on page 7-105) 
lan.status.port.telnet (on page 7-106) 
lan.status.port.vxi11 (on page 7-106) 
lan.status.speed (on page 7-107) 
lan.status.subnetmask (on page 7-107) 
lan.trigger[N].assert() (on page 7-108) 
lan.trigger[N].clear() (on page 7-108) 
lan.trigger[N].connect() (on page 7-109) 
lan.trigger[N].connected (on page 7-109) 
lan.trigger[N].disconnect() (on page 7-110) 
lan.trigger[N].EVENT_ID (on page 7-111) 
lan.trigger[N].ipaddress (on page 7-111) 
lan.trigger[N].mode (on page 7-112) 
lan.trigger[N].overrun (on page 7-113) 
lan.trigger[N].protocol (on page 7-114) 
lan.trigger[N].pseudostate (on page 7-114) 
lan.trigger[N].stimulus (on page 7-115) 
lan.trigger[N].wait() (on page 7-117) 
localnode.description (on page 7-119) 
localnode.password (on page 7-121) 
localnode.passwordmode (on page 7-122) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-11 

 

Local node 
Commands that allow you to set and read from the local node. 

localnode.define.* (on page 7-118) 
localnode.description (on page 7-119) 
localnode.model (on page 7-121) 
localnode.password (on page 7-121) 
localnode.prompts (on page 7-123) 
localnode.prompts4882 (on page 7-124) 
localnode.reset() (on page 7-124) 
localnode.revision (on page 7-125) 
localnode.serialno (on page 7-126) 
localnode.showerrors (on page 7-127) 
node[N].execute() (on page 7-120) 
node[N].getglobal() (on page 7-120) 
node[N].setglobal() (on page 7-126) 

 

make accessor functions 
Use these functions to create functions to get and set attribute values. 
makegetter() (on page 7-127) 
makesetter() (on page 7-128) 

 

memory functions 
Check the amount of memory that is available or used in the instrument. 
 

 

opc function 
This function sets the operation complete status bit when all overlapped commands are completed. 
opc() (on page 7-131) 

 

print functions 
Output data from the instrument. 

print() (on page 7-131) 
printbuffer() (on page 7-132) 

printnumber() (on page 7-134) 
 

Reset 
Resets settings to their default settings. 

digio.trigger[N].reset() (on page 7-58) 
lan.reset() (on page 7-101) 
localnode.reset() (on page 7-124) 
reset() (on page 7-135) 
timer.reset() (on page 7-200) 
trigger.blender[N].reset() (on page 7-203) 
trigger.timer[N].reset() (on page 7-211) 
tsplink.trigger[N].reset() (on page 7-224) 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-12 707B-901-01 Rev. B / January 2015 

 

Scan 
The scan functions and attributes allow you to set up scanning over the remove interface. 

scan.abort() (on page 7-135) 
scan.add() (on page 7-136) 
scan.addimagestep() (on page 7-138) 
scan.background() (on page 7-139) 
scan.bypass (on page 7-140) 
scan.create() (on page 7-141) 
scan.execute() (on page 7-142) 
scan.list() (on page 7-143) 
scan.mode (on page 7-145) 
scan.reset() (on page 7-146) 
scan.scancount (on page 7-147) 
scan.state() (on page 7-148) 
scan.stepcount (on page 7-149) 
scan.trigger.arm.clear() (on page 7-149) 
scan.trigger.arm.set() (on page 7-150) 
scan.trigger.arm.stimulus (on page 7-150) 
scan.trigger.channel.clear() (on page 7-152) 
scan.trigger.channel.set() (on page 7-152) 
scan.trigger.channel.stimulus (on page 7-153) 
scan.trigger.clear() (on page 7-155) 

 

Scripting 
Scripting helps you combine commands into a block of code that the instrument can run. Scripts help 
you communicate with the instrument efficiently. These commands describe how to create, load, 
modify, run, and exit scripts. 

For detail on using scripts, see Fundamentals of scripting for TSP (on page 6-1). 
createconfigscript() (on page 7-47) 
exit() (on page 7-88) 
makegetter() (on page 7-127) 
makesetter() (on page 7-128) 
script.anonymous (on page 7-155) 
script.delete() (on page 7-156) 
script.new() (on page 7-156) 
script.newautorun() (on page 7-158) 
script.restore() (on page 7-159) 
script.run() (on page 7-159) 
script.user.catalog() (on page 7-160) 
scriptVar.autorun (on page 7-160) 
scriptVar.list() (on page 7-162) 
scriptVar.name (on page 7-162) 
scriptVar.run() (on page 7-163) 
scriptVar.save() (on page 7-164) 
scriptVar.source (on page 7-165) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-13 

 

Slot 
The slot attributes configure and read the settings of the cards in the slots. You can also set up 
pseudocards. 

slot[X].idn (on page 7-168) 
slot[X].poles.four (on page 7-169) 
slot[X].poles.one (on page 7-170) 
slot[X].poles.two (on page 7-171) 
slot[X].pseudocard (on page 7-171) 

 

Status model functions 
The status model is a set of status registers and queues. You can use the following commands to 
manipulate and monitor these registers and queues to view and control various instrument events. 

status.condition (on page 7-172) 
status.node_enable (on page 7-174) 
status.node_event (on page 7-176) 
status.operation.* (on page 7-177) 
status.operation.user.* (on page 7-179) 
status.questionable.* (on page 7-181) 
status.request_enable (on page 7-183) 
status.request_event (on page 7-185) 
status.reset() (on page 7-187) 
status.standard.* (on page 7-187) 
status.system.* (on page 7-190) 
status.system2.* (on page 7-192) 
status.system3.* (on page 7-194) 
status.system4.* (on page 7-196) 
status.system5.* (on page 7-198) 
 

 

timer functions 
Use the functions in this group to control the timer. The timer can be used to measure the time it 
takes to perform various operations. Use the timer.reset() function at the beginning of an 
operation to reset the timer to zero, and then use the timer.measure.t() at the end of the 
operation to measure the elapsed time. 
timer.measure.t() (on page 7-200) 
timer.reset() (on page 7-200) 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-14 707B-901-01 Rev. B / January 2015 

 

trigger functions and attributes 
Use the trigger functions and attributes to control specific trigger objects. 

trigger.blender[N].clear() (on page 7-201) 
trigger.blender[N].EVENT_ID (on page 7-201) 
trigger.blender[N].orenable (on page 7-202) 
trigger.blender[N].overrun (on page 7-203) 
trigger.blender[N].reset() (on page 7-203) 
trigger.blender[N].stimulus[M] (on page 7-204) 
trigger.blender[N].wait() (on page 7-205) 
trigger.clear() (on page 7-206) 
trigger.EVENT_ID (on page 7-206) 
trigger.timer[N].clear() (on page 7-206) 
trigger.timer[N].count (on page 7-207) 
trigger.timer[N].delay (on page 7-208) 
trigger.timer[N].delaylist (on page 7-208) 
trigger.timer[N].EVENT_ID (on page 7-209) 
trigger.timer[N].overrun (on page 7-210) 
trigger.timer[N].passthrough (on page 7-210) 
trigger.timer[N].reset() (on page 7-211) 
trigger.timer[N].stimulus (on page 7-212) 
trigger.timer[N].wait() (on page 7-213) 
trigger.wait() (on page 7-213) 

 

TSP-Link 
These functions and attributes allow you to set up and work with a system that is connected by a 
TSP-Link® network. 

tsplink.group (on page 7-214) 
tsplink.master (on page 7-215) 
tsplink.node (on page 7-215) 
tsplink.readbit() (on page 7-216) 
tsplink.readport() (on page 7-216) 
tsplink.reset() (on page 7-217) 
tsplink.state (on page 7-218) 
tsplink.trigger[N].assert() (on page 7-219) 
tsplink.trigger[N].clear() (on page 7-219) 
tsplink.trigger[N].EVENT_ID (on page 7-220) 
tsplink.trigger[N].mode (on page 7-220) 
tsplink.trigger[N].overrun (on page 7-222) 
tsplink.trigger[N].pulsewidth (on page 7-223) 
tsplink.trigger[N].release() (on page 7-223) 
tsplink.trigger[N].reset() (on page 7-224) 
tsplink.trigger[N].stimulus (on page 7-224) 
tsplink.trigger[N].wait() (on page 7-225) 
tsplink.writebit() (on page 7-226) 
tsplink.writeport() (on page 7-227) 
tsplink.writeprotect (on page 7-227) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-15 

 

TSP-Net 
The TSP-Net module provides a simple socket-like programming interface to Test Script Processor 
(TSP®) enabled instruments. 

tspnet.clear() (on page 7-228) 
tspnet.connect() (on page 7-229) 
tspnet.disconnect() (on page 7-230) 
tspnet.execute() (on page 7-231) 
tspnet.idn() (on page 7-232) 
tspnet.read() (on page 7-232) 
tspnet.readavailable() (on page 7-233) 
tspnet.reset() (on page 7-234) 
tspnet.termination() (on page 7-234) 
tspnet.timeout (on page 7-235) 
tspnet.tsp.abort() (on page 7-236) 
tspnet.tsp.abortonconnect (on page 7-236) 
tspnet.tsp.rbtablecopy() (on page 7-237) 
tspnet.tsp.runscript() (on page 7-238) 
tspnet.write() (on page 7-239) 

 

Userstrings 
Use the functions in this group to store and retrieve user-defined strings in nonvolatile memory. 
These strings are stored as key-value pairs. Key-value pairs are associated arrays of data items, 
where the key is used to index into the array. The key is a unique identifier such as a part number or 
identification string. The value is a data item or a pointer to where that data item is stored.  

 

You can use the userstring functions to store custom, instrument-specific information in the 
instrument, such as department number, asset number, or manufacturing plant location. 
userstring.add() (on page 7-239) 
userstring.catalog() (on page 7-240) 
userstring.delete() (on page 7-241) 
userstring.get() (on page 7-242) 

 

waitcomplete function 
Allows you to send a command to wait for all overlapped operations in a group to complete. 
waitcomplete() (on page 7-242) 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-16 707B-901-01 Rev. B / January 2015 

 

Overview of instrument drivers 
To use an instrument connected to a computer, you need to send instrument commands to it to make 
it do what you want. This can be tedious, as the programmer has to learn the low level syntax and 
also deal with how their programming language or development environment interfaces to the remote 
communication interface driver or VISA I/O library. Keithley and most other test and measurement 
companies supply instrument drivers for their instruments.  

One thing a driver can do is deal with cross-coupling issues. If you change a setting on an instrument, 
this can cause other settings to change without notifying you. For example, if you change the range 
on an instrument, the resolution can change at the same time. Instrument drivers take care of these 
issues for you as long as it is feasible. Therefore, a driver would have a call where you pass in the 
measurement function, range, and resolution. The driver would then take care of sending the correct 
sequence of commands or generate an error if it was impossible to set the requested values. 

For information on finding instrument drivers on the Keithley website, see Getting instrument drivers 
(on page 5-18). 

 

Instrument driver types 
There are several different styles of instrument drivers. Keithley Instruments provides three different 
instrument drivers for the Models 707B and 708B: A native LabVIEW driver, an IVI-C driver, and an 
IVI-COM driver. You need to pick the style that best suits the application development environment 
(ADE) that you are using. For example, if you are using LabVIEW, you would pick a native LabVIEW 
driver. If a native LabVIEW driver is not available then you can use an IVI-C driver as LabVIEW has 
the option of creating a wrapper for the IVI-C driver. 

LabVIEW supports IVI-COM drivers but they are definitely not the first or second choice. However, if 
they are the only driver types for the instrument, they can be used. 

If LabWindows/CVI or C/C++ is your programming language, an IVI-C driver is the best option. For 
Microsoft® Visual Basic® 6.0 and any .NET language (C#, VB.NET, and so on), an IVI-COM driver is 
the best option. 

Sometimes instrument vendors do not provide all three driver types. Most languages can 
accommodate other driver types, but this is not optimal. 

The following sections describe the different driver types in more detail. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-17 

 

VXIPnP drivers 
VXI (Vixie) plug-and-play (VXIPnP) style drivers are Win32 DLLs that have some standard functions 
defined by the VXIPnP Alliance, such as:  

• init  
• close  
• error_message  
• reset  
• self_test  
• Read  
• Initiate  
• Fetch  
• Abort  

The application programming interface (API) was defined so that users of instruments would have a 
familiar API from instrument to instrument. There are some basic guidelines when creating APIs for 
your instrument, such as using VISA data types and how to construct the CVI hierarchy. 

 

Interchangeable Virtual Instruments (IVI) style drivers 
The major problem with VXIPnP drivers was that the API was not specific to the instrument. For 
something as standard as measuring DC volts on a digital multimeter (DMM), it would be a good idea 
if there were a set of standard functions to do this. 

The IVI Foundation (http://www.ivifoundation.org) defined a set of application programming interfaces 
(APIs) for the following instruments: DMM, function generator, DC power supply, scope, switch, 
spectrum analyzer, RF signal generator and power meter. They are currently working on class APIs 
for some other instrument types. 

There are two types of IVI drivers: IVI-COM drivers use Microsoft® COM technology to expose driver 
functionality, while IVI-C drivers use conventional Microsoft® Windows® DLLs to export simple C-
based functions.  

For more information about IVI drivers and the differences between the COM, C, and .NET interfaces, 
see Making the Case for IVI 
(http://pacificmindworks.com/docs/Making%20the%20Case%20for%20IVI.pdf). 

 

http://www.ivifoundation.org/
http://pacificmindworks.com/docs/Making%20the%20Case%20for%20IVI.pdf


Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-18 707B-901-01 Rev. B / January 2015 

 

LabVIEW drivers 
Native LabVIEW drivers 

A native LabVIEWTM driver is a LabVIEW driver that is created using entirely built-in LabVIEW VIs — 
it does not make any calls to external DLLs or Library files. This makes the driver portable to all the 
platforms and operating systems that LabVIEW and VISA supports (currently, Linux® on x86, Mac 
OS® X, and Microsoft® Windows®). 

National Instruments (NITM) maintains a native LabVIEW driver style guide 
(http://zone.ni.com/devzone/cda/tut/p/id/3271). 

LabVIEW driver wrappers 

All IVI-C drivers have a function panel file (.fp) that shows a hierarchy of the function calls into a DLL. 
It is a tool that guides a user to select the correct function call in the driver, since a DLL only has a flat 
API entry point scheme (unlike COM or .NET). Any CVI-generated .fp file can be imported into 
LabVIEW and LabVIEW will generate a wrapper for the DLL. The drawback here is that the driver is 
dependent on the DLL, which is not portable and is therefore Windows-specific. 

 

Getting instrument drivers 
To see what drivers are available for your instrument: 
1. Go to the Keithley Instruments support website (http://www.keithley.com/support). 
2. Enter the model number of your instrument. 
3. Select Software Driver from the list. 

For LabVIEWTM, you can also go to the National Instrument website and search their instrument 
driver database. 

 

Instrument driver examples 
All Keithley drivers come with examples written in several programming languages that show you how 
to do the most common things with the instruments. 

Install the driver. The examples are in the Microsoft® Windows® Start menu, under Keithley 
Instruments > Model Number (where Model Number is the instrument model number). 

 

http://zone.ni.com/devzone/cda/tut/p/id/3271
http://www.keithley.com/support


Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-19 

 

Migrating from Models 707A and 708A 

Migrating Model 707A or 708A programs to Model 707B or 708B 
This section is intended to assist you if you are migrating existing programs from the Model 707A or 
708A to use the TSP programming syntax on the Model 707B or 708B. 

The Model 707A and 708A instruments use device-dependent command (DDC) programming. The 
Model 707B or 708B use the TSP scripting model. This section provides you with: 

• Command syntax differences 
• A brief explanation of some Model 707A and 708A model-specific terminology and its Model 

707B or 708B equivalent 

Users who want to run programs using Model 707A or 708A DDC commands can run in Model 707A 
or 708A compatibility mode. See Using Models 707A and 708A compatibility mode (on page B-1).   

 

Platform differences 
When writing a script for the Model 707B or 708B instrument, consider the following platform 
differences. 

 

 Model 707A or 708A Model 707B or 708B 

Execution host A computer sends commands 
over GPIB from a user-
generated program such as 
Visual Basic, C# or C/C++ 

A computer sends either 
commands or user-generated 
scripts over GPIB, USB, or 
Ethernet. Scripts can also be run 
from the front panel of the Model 
707B or 708B. 

Command structure Single ASCII capital letter 
commands, followed by 
argument if necessary. 

Descriptive, word-based 
command and argument 
structure using modern dot 
notation format. 

Store program flow control Not possible; instrument can 
only step sequentially through a 
stored relay setup in response to 
an external trigger. 

TSP scripting environment 
allows access to all Lua program 
control structure operations, 
such as for-next, if-then-else, 
while-do, and repeat-until. 

 
 

Execution host 

One of the most significant differences between the Model 707A or 708A and Model 707B or 708B is 
the ability to store user scripts on the instrument. Once loaded onto the instrument, these scripts can 
be run without connection to a computer. This is different from the Model 707A or 708A, which could 
only iterate through an existing stored relay setup if there was no connection to a computer. The 
ability of the Model 707B or 708B to run scripts that are stored locally results in fast execution time 
and no communications bottlenecks between the instrument and the computer. 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-20 707B-901-01 Rev. B / January 2015 

 

Command structure 

The DDC structure of the Model 707A or 708A instrument is based on a single ASCII capital letter 
with possible alphanumeric arguments and terminated with the "X" execute command. 

The Model 707B or 708B instrument uses a modern dot notation format that logically organizes 
commands by family, subset 1, subset 2 – optional, and argument. For example: 
channel.open("allslots") 

 

Stored program flow control 

DDC programming depended on an additional programming environment to send commands to the 
707A or 708A instrument. This provided options for program flow control, but at the expense of added 
complexity. 

The TSP scripting environment uses the Lua programming language, providing a robust and cohesive 
flow control framework. 

 

DDC to ICL command equivalencies 
In many cases, DDC commands have a single corresponding ICL equivalent command that performs 
the same or a similar function. 

In some cases, more than one ICL command is needed to provide the same functionality of its 
equivalent DDC counterpart because of the expanded capabilities and additional flexibility of the TSP 
scripting environment. 

The following sections describe the equivalent commands or sets of commands. 
 

Commands with one-to-one equivalents 
The commands in the following table are equivalent. 
 

Commands with one-to-one equivalents 

DDC TSP equivalent command Description 

Crc channel.close(channelList) Closes a channel 

Nrc channel.open(channelList) Opens a channel 
Hn display.sendkey() Emulates a keypress 
P0 channel.open("allslots") Opens all channels on all slots 
R0 reset() Restore factory defaults 
U2, 0 channel.getclose("allslots") Get closed channels on all slots 
X No corresponding command Execute 
J0 No corresponding command Self-test 
U7 digio.readport() Read value from digital I/O port 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-21 

 

Relay setup commands 
The following table shows DDC commands that refer to Model 707A and 708A relay setups. The 
Model 707B or 708B equivalent of relay setups are called scans and patterns. 

Scans allow a predetermined set of channels to be closed in a sequential order based on a particular 
event or combination of events. For more information, see Scanning and triggering (on page 3-1). 

There are some distinct differences between relay setups and scans: 

• Scans can only be accessed sequentially. Unlike relay setups, you cannot specify an alternate 
starting location. 

• You can only retrieve scan lists in string format. 
• You can only append steps to scans — you cannot insert scan steps before steps that are 

already in the scan list. 
• You cannot remove scan steps from the scan list. 

The correlation to scanning holds true for DDC commands In, En, E0, Lbbbb, Pn, and Qn, while the 
DDC commands Z0,n, Zn,0, and Zm,n resemble patterns on the Model 707B or 708B instrument. 
Patterns allow several channels to be associated by a name, and any operation that occurs to the 
pattern (such as close or open) happens to each channel in the pattern. For more information, see 
Channel patterns (on page 2-92). 

 

Scanning trigger 

DDC TSP equivalent command Description 

En No corresponding command Point to present relay setup 
E0 No corresponding command Point to stored relay setup 
Lbbbb print(scan.list()) Download setups 
Pn No corresponding command Clear relay setup 
Qn scan.create("") Delete setup 
Z0,n channel.pattern.snapshot("patternName") Copy present relays to n 
Zn,0 channel.close("patternName") Copy setup from n to relays 
Zm,n channel.pattern.setimage(pattern1, pattern2) Copy setup from m to n 
In No corresponding command Insert blank setup to mem 

 

Disable or enable the scan event trigger 
When enabling external triggering on the Model 707A or 708A instruments, there were two possible 
trigger sources, the external trigger line or a GPIB Get command. The Model 707B or 708B has 
multiple trigger events that are available to iterate through a scan list. The following table shows that 
specifying a scan event trigger automatically enables it. For more information, see Scanning and 
triggering (on page 3-1). 

 

 

Scanning trigger 

DDC TSP equivalent command Description 

F0 scan.trigger.channel.stimulus = 0 Disable scanning trigger 
F1 scan.trigger.channel.stimulus = eventID Enable scanning trigger 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-22 707B-901-01 Rev. B / January 2015 

 

Trigger polarity 
The Model 707A or 708A instrument has one external trigger input that was available to accept TTL 
level trigger inputs to advance the stored relay setup step. 

The Model 707B or 708B instrument allows 14 TTL level inputs through the digital I/O connector to 
act as events to iterate through a scan list. The handling of this command is similar to the F0 and F1 
DDC commands shown in the table below, except that you must specify [N] as the digital I/O line 
polarity you wish to set. For more information, see Scanning and triggering (on page 3-1). 

 

Scan trigger polarity 

DDC TSP equivalent command Description 

A0 digio.trigger[N].mode = digio.TRIG_FALLING 
scan.trigger.channel.stimulus = digio.trigger[N].EVENT_ID 

Select falling edge for 
scan trigger 

A1 digio.trigger[N].mode = digio.TRIG_RISINGA 
scan.trigger.channel.stimulus = digio.trigger[N].EVENT_ID 

Select falling edge for 
scan trigger 

 

Matrix ready 
The Model 707A or 708A instrument provides a dedicated TTL output for when a channel close or 
open operation completes. This output includes the settling time of the specific channel (fixed in 
hardware) added to a programmed settling time that could be specified by the user. These 
commands are shown in the table below. 

 

 

Matrix ready polarity 

DDC TSP equivalent command Description 

B0 No corresponding command Rising edge on matrix ready 
B1 No corresponding command Falling edge on matrix ready 

 

The Model 707B or 708B instrument does not have a dedicated matrix ready line when the DDC 
command compatibility is disabled. However, you can create a TSP function that can emulate the 
dedicated hardware matrix ready function onto a digital I/O line. The following examples show you 
how to create TSP code functions for channel close and channel open, respectively, that will 
duplicate matrix ready functionality for digital I/O Bit B10. After including these functions in your script, 
a channel close operation is made by calling the function with the channel argument: 
chanClose("1A01") 

 

For more information, see Digital I/O port (on page 2-7). 

Example: Channel close with matrix-ready functionality 

 

function chanClose(chan) Function accepts valid channels as arguments 
digio.writebit(10,0) Clear the 10th digital I/O bit before the close 

operation 
channel.close(chan) Close the channels in the argument 
digio.writebit(10,1) Set the 10th digital I/O bit after the close 

operation 
end End the function 

 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-23 

 

Example: Channel open with matrix-ready functionality 

 

function chanOpen(chan) Function accepts valid channels as arguments 
digio.writebit(10,0) Clear the 10th digital I/O bit before the open 

operation 
channel.open(chan) Open the channels in the argument 
digio.writebit(10,1) Set the 10th digital I/O bit after the open 

operation 
end End the function 

 

Set VFD display 
The following commands display a value on the VFD front panel. To return the display to power-on 
default, send the command: 
display.screen = display.main 

The display can also be cleared with the display.clear() command. 
 

 

VFD display 

DDC TSP equivalent command Description 

Dccccccc display.screen = display.USER  Set VFD display text 
 display.settext()  

 

Set relay setup data format 
The Gn DDC command controls the data format of relay setups that are returned when queried with 
the U2,s command. The Model 707B or 708B uses a string format for returning scan list, so data 
formatting is not used. 

 

Relay setup data format 

DDC TSP equivalent command Description 

Gn No corresponding command Data format 
 

GPIB EOI hold off control 
The Kn DDC command controls how the GPIB EOI line behaves. The Model 707B or 708B 
commands are processed from an internal buffer as they are received, so no control is required for 
the GPIB EOI line. 

 

GPIB EOI hold off 

DDC TSP equivalent command Description 

Kn No corresponding command GPIB EOI/hold off control 
 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-24 707B-901-01 Rev. B / January 2015 

 

Service request configuration 
These commands control the behavior of the SRQ line. The Model 707B or 708B instrument can 
configure some of the events that cause the SRQ to assert, but none of those events address Matrix 
Ready or when the instrument is ready for trigger. For more information, see Status model functions 
(on page 5-13). 

 

Service request configuration 

DDC TSP equivalent command Description 

M0 status.request_enable = 0 Disable SRQ 
M8 No corresponding command SRQ on Matrix Ready 
M16 No corresponding command SRQ on Matrix Ready 
M32 status.request_enable = 

status.ERROR_AVAILABLE 
SRQ on error 

 

Digital I/O control 
The Model 707B or 708B instrument provides increased flexibility, with fourteen digital I/O lines 
(compared to the Model 707A, which has eight input lines and eight output lines, and the Model 708A, 
which has sixteen input lines and sixteen output lines). It is also possible to write to the digital I/O port 
simultaneously or on a per-bit basis. For more information, see the Digital I/O (on page 5-8) section. 

 

Digital I/O control 

DDC TSP equivalent command Description 

Onnn 
 
Db,s 

digio.writeport(data) 
or 
digio.writebit(bit,data) 

Sets states of digital I/O 

 

Additional channel settling time 
The Model 707A or 708A had the ability to add relay settling time to the system after a channel closes 
or opens. The Model 707B or 708B improves on the settling time and allows you to apply additional 
settling delay on a per-channel basis. For more information, see channel functions and attributes (on 
page 5-4). 

 

Additional channel settling time 

DDC TSP equivalent command Description 

Sn channel.setdelay(channelList,value) Additional settling time 
 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-25 

 

Retrieve card settling time 
Although base channel settle time cannot be returned, additional delay time that was specified with 
the channel.setdelay(channelList,delay) command can be returned using: 
channel.getdelay("allslots") 

Delays for each channel in csv format are returned. For more information, see channel functions and 
attributes (on page 5-4). 

 

Card settling time 

DDC TSP equivalent command Description 

U6 No corresponding command Send longest settling time 
 

Trigger source control 
The DDC commands in the following table control the trigger source for advancing the relay setups. 
The Model 707B or 708B instrument provides similar functionality, but omits triggering on talk and 
triggering on X. For more information, see Scanning and triggering (on page 3-1). 

 

Trigger source control 

DDC TSP equivalent command Description 

T0 or T1 No corresponding command Trigger on Talk 
T2 or T3 scan.trigger.channel.stimulus = trigger.EVENT_ID Trigger on GPIB Get 
T4 or T5 No corresponding command Trigger on X 
T6 or T7 scan.trigger.channel.stimulus = 

digio.trigger[N].EVENT_ID 
Trigger on external trigger 

 

Send machine status word 
The DDC U0 command provides information on several areas of the Model 707A or 708A instrument 
in one long csv form. There is no one command to provide the same functionality as the U0 
command, but the series of Model 707B or 708B commands shown in the following table can be used 
to provide very similar information, without the need to parse a long, unwieldy string. 

 

Send machine status word 

DDC TSP equivalent commands Description 

U0 print(localnode.model) 
print(scan.trigger.channel.stimulus) 
print(display.getlastkey()) 
print(status.request_enable) 
print(digio.readport()) 

Returns the model number 
Returns trigger stimulus line 
Returns the last key pressed 
Gets SRQ Mask 
Reads Digital I/O port 

 



Section 5: Introduction to TSP operation Models 707B and 708B Switching Matrix Reference Manual 
 

5-26 707B-901-01 Rev. B / January 2015 

 

Error status word 
This series of commands provides a descriptive list of error codes and error messages until no more 
errors are present. For more information, see Error queue (on page 5-8). 

 

Error status word 

DDC TSP equivalent command Description 

U1 count = errorqueue.count 
for x=count,0,1 do 
errorcode, message = errorqueue.next() 
print(errorcode) 
print(message) 
end 

Get the number of errors in the queue 
For loop 
Get next error codes 
Print errorcode 
Print error messages 
End 

 

Relay pointer operations 
The DDC commands in the following table use relay setups as the Model 707B or 708B instrument 
would use patterns. 

The U2,n DDC command returns the channels that are closed in a format based on the DDC Gn 
command. The corresponding command for this operation returns the channels contained in the 
pattern as a csv list. There is no need to send a pattern to the relays. Operations that are to be done 
to the channels of a pattern are done on the pattern correctly. For more information, see channel 
functions and attributes (on page 5-4). 

 

Relay pointer operations 

DDC TSP equivalent command Description 

U2,n channel.pattern.getimage(pattern) Point to stored relay setup 
U3 No corresponding command Send relay step pointer 

 

Number of subordinates 
The Model 707B or 708B can expand to other Keithley Instrument’s products that have a TSP-Link 
connector available. When the command listed in the following table is executed, it provides the 
number of nodes present in the TSP-linked system. 

A feature of the Model 707B or 708B is that these remote nodes are not limited to Model 707B or 
708B instruments. They can be remotely linked to any Keithley product that supports TSP-Link. For 
more information, see TSP-Link system (on page 6-44). 

 

 

Number of subordinates 

DDC TSP equivalent command Description 

U4 print(tsplink.reset()) Send number of subordinate devices 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 5: Introduction to TSP operation 
 

707B-901-01 Rev. B / January 2015 5-27 

 

The following command returns the model of the card in the specified slot of the local instrument, 
along with a description of the card, the firmware version, and the serial number. 

To get information from cards in TSP-Link connected instruments, send: 
print(node[nodeNumber].slot[slotNumber].idn) 

Where: nodeNumber is the TSP-Link node of the remote system and slotNumber is the slot on the 
instrument to query. For more information, see Slot (on page 5-13) and TSP-Link (on page 5-14). 

 

Card model number 

DDC TSP equivalent command Description 

U5,n print(slot[slotNumber].idn) Send identification of each card in the instrument 
 

Relay test input 
The Model 707B or 708B instrument does not use a relay test connector, so this command is not 
supported. 

 

Relay test input 

DDC TSP equivalent command Description 

U8 No corresponding command Send relay test input 
 

Connect rules 
On the Model 707B or 708B, this command sets the connect rules for the entire instrument. You 
cannot set this rule on a row-by-row basis. If this feature is required, the high performance of the 
Model 707B or 708B instrument provides ample time to change the connection rules as needed 
before channel close or open operations. For more information, see channel functions and attributes 
(on page 5-4). 

 

Connect rules 

DDC TSP equivalent command Description 

Vabcdefg channel.connectrule = channel.MAKE_BEFORE_BREAK Make-before-break 

Wabcdefg channel.connectrule = channel.BREAK_BEFORE_MAKE Break-before-make 
 

Termination character sent by instrument 
The Model 707B or 708B always sends a linefeed (ASCII 10) as a termination character after any 
data. This behavior cannot be changed. 

 

Termination characters 

DDC TSP equivalent command Description 

Yn No corresponding command Termination character 
 

 





 

 

In this section: 

Fundamentals of scripting for TSP ........................................... 6-1 
Fundamentals of programming for TSP ................................. 6-10 
Using Test Script Builder (TSB) ............................................. 6-31 
Advanced scripting for TSP .................................................... 6-33 
TSP-Link system and running simultaneous test scripts ........ 6-44 
TSP-Net ................................................................................. 6-52 

 
 

Fundamentals of scripting for TSP 

Fundamentals of scripting for TSP 

Though it can improve your process to use scripts, you do not have to create scripts to use the 
instrument. Most of the examples in the documentation can be run by sending individual command 
messages. The next few sections of the documentation describe scripting and programming features 
of the instrument. You only need to review this information if you are using scripting and 
programming. 

 

Scripting helps you combine commands into a block of code that the instrument can run. Scripts help 
you communicate with the instrument more efficiently. 

Scripts offer several advantages compared to sending individual commands from the host controller 
(computer): 

• Scripts are easier to save, refine, and implement than individual commands. 
• The instrument performs more quickly and efficiently when it processes scripts than it does when 

it processes individual commands. 
• You can incorporate features such as looping and branching into scripts. 
• Scripts allow the controller to perform other tasks while the instrument is running a script, 

enabling some parallel operation. 
• Scripts eliminate repeated data transfer times from the controller. 

In the instrument, the Test Script Processor (TSP®) scripting engine processes and runs scripts. 

This section describes how to create, load, modify, and run scripts. 
 

Section 6 

Instrument programming 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-2 707B-901-01 Rev. B / January 2015 

 

What is a script? 
A script is a collection of instrument control commands and programming statements. Scripts that you 
create are referred to as user scripts. 

Your scripts can be interactive. Interactive scripts display messages on the front panel of the 
instrument that prompt the operator to enter parameters. 

 

Run-time and nonvolatile memory storage of scripts 
Scripts are loaded into the run-time environment of the instrument. From there, they can be stored in 
nonvolatile memory in the instrument. 

The run-time environment is a collection of global variables, which include scripts, that the user has 
defined. A global variable can be used to store a value while the instrument is turned on. When you 
create a script, the instrument creates a global variable with the same name so that you can 
reference the script more conveniently. After scripts are loaded into the run-time environment, you 
can run and manage them from the front panel of the instrument or from a computer. Information in 
the run-time environment is lost when the instrument is turned off. 

Nonvolatile memory is where information is stored even when the instrument is turned off. Save 
scripts to nonvolatile memory to save them even if the power is cycled. The scripts that are in 
nonvolatile memory are loaded into the run-time environment when the instrument is turned on. 

Scripts are placed in the run-time environment when: 

• The instrument is turned on. All scripts that are saved to nonvolatile memory are copied to the 
run-time environment when the instrument is turned on. 

• Loaded over a remote command interface. 

For detail on the amount of memory available in the run-time environment, see Memory 
considerations for the run-time environment (on page 6-42). 

 
If you make changes to a script in the run-time environment, the changes are lost when the 
instrument is turned off. To save the changes, you must save them to nonvolatile memory. See 
Working with scripts in nonvolatile memory (on page 6-7). 

 

What can be included in scripts? 
Scripts can include combinations of TSP commands and Lua code. TSP commands instruct the 
instrument to do one thing and are described in the command reference (see TSP commands). Lua is 
a scripting language that is described in Fundamentals of programming for TSP (on page 6-10). 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-3 

 

Commands that cannot be used in scripts 
Though an instrument accepts the following commands, you cannot use these commands in scripts. 

Commands that cannot be used in scripts 

General commands IEEE Std 488.2 common commands 
abort 
endflash 
endscript 
flash 
loadscript 
loadandrunscript 
password 

*CLS 
*ESE 
*ESE? 
*ESR? 
*IDN? 
*OPC 
*OPC? 

*RST 
*SRE 
*SRE? 
*STB? 
*TRG 
*TST? 
*WAI 

 

Manage scripts 
This section describes how to create scripts by sending commands over the remote interface and 
using TSB Embedded.  

 

Tools for managing scripts 

To manage scripts, you can send messages to the instrument, use your own development tool or 
program, use Keithley Instruments Test Script Builder (TSB) software, or use TSB Embedded on the 
instrument's web interface. TSB and TSB Embedded are described below. 

• Test Script Builder (TSB) software: TSB software is a programming tool that is on the Test 
Script Builder Software Suite CD-ROM (included with your Models 707B and 708B). You can use 
it to create, modify, debug, and store Test Script Processor (TSP®) scripting engine scripts. For 
more information about using the TSB software, see Using Test Script Builder (TSB) (on page 6-
31). 

• TSB Embedded: TSB Embedded is a tool with a reduced set of features than the complete 
Keithley TSB software. TSB Embedded has both script-building functionality and console 
functionality (single-line commands). It is accessed from a web browser. 

If you are using TSB or TSB Embedded to create scripts, you do not need to use the commands 
loadscript or loadandrunscript and endscript. 

 

Create and load a script 

You create scripts by loading them into the run-time environment of the instrument. You can load a 
script as a named script or as the anonymous script. 

Once a script is loaded into the instrument, you can execute it remotely or from the front panel. 
 

Anonymous scripts 

If a script is created with the loadscript or loadandrunscript command with no name defined, 
it is called the "anonymous" script. There can only be one anonymous script in the run-time 
environment. If another anonymous script is loaded into the run-time environment, it replaces the 
existing anonymous script. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-4 707B-901-01 Rev. B / January 2015 

 

Named scripts 

A named script is a script with a unique name. You can have as many named scripts as needed in 
the instrument (within the limits of the memory available to the run-time environment). When a named 
script is loaded into the run-time environment with the loadscript or loadandrunscript 
commands, a global variable with the same name is created to reference the script. 

Key points regarding named scripts: 

• If you load a new script with the same name as an existing script, the existing script becomes an 
unnamed script, which in effect removes the existing script if there are no variables that reference 
it. 

• Sending revised scripts with different names will not remove previously loaded scripts. 
• Named scripts can be saved to internal nonvolatile memory. Saving a named script to nonvolatile 

memory allows the instrument to be turned off without losing the script. See Working with scripts 
in nonvolatile memory (on page 6-7). 

 

Load a script by sending commands over the remote interface 

To load a script over the remote interface, you can use the loadscript, loadandrunscript, and 
endscript commands. 

The loadscript and loadandrunscript commands start the collection of messages that make 
up the script. When the instrument receives either of these commands, it starts collecting all 
subsequent messages. Without these commands, the instrument would run them immediately as 
individual commands. 

 

The endscript command tells the instrument to compile the collection of messages. It compiles the 
messages into one group of commands. This group of commands is loaded into the run-time 
environment. 

The following figure shows an example of how to load a script named “test.” The first command tells 
the instrument to start collecting the messages for the script named “test.” The last command marks 
the end of the script. When this script is run, the message “This is a test” is displayed on the 
instrument and sent to the computer. 

 

Figure 82: Loadscript and endscript example 

 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-5 

 

To load a named script by sending commands: 
1. Send the command loadscript scriptName, where scriptName is the name of the script. 

The name must be a legal Lua variable name. 
2. Send the commands that need to be included in the script. 
3. Send the command endscript. 
4. You can now run the script. See Run scripts (on page 6-5). 

 

To run the script immediately, use loadandrunscript scriptName instead of loadscript. 
 

Create a script using TSB Embedded 

If you are using TSB Embedded to create scripts, you do not need to use the commands 
loadscript or loadandrunscript and endscript. 

 

You can create a script from the instrument web page with TSB Embedded. When you save the script 
in TSB Embedded, it is loaded into the run-time environment and saved in the nonvolatile memory of 
the instrument. For information about using TSB Embedded, select the Help button on a web page or 
the Help option from the navigation pane on the left side of the web interface. 

 

To create a script using TSB Embedded: 
1. In the TSP Script box, enter a name for the script. 
2. In the input area, enter the sequence of commands to be included in the script. 
3. Click Save Script. The name is added to the User Scripts list on the left. 

 

Run scripts 

This section describes how to run the anonymous and named scripts. 

If the instrument is in local control when the script is started, it switches to remote control (REM is 
displayed) while the script is running. The instrument is returned to local control when the script 
completes. If you press the front-panel EXIT (LOCAL) key while the script is running, the script is 
stopped. 

 

Run the anonymous script 

The anonymous script can be run many times without reloading it. It remains in the run-time 
environment until a new anonymous script is created or until the instrument is turned off. 

 

To run the anonymous script, use any one of these commands: 

• run() 

• script.run() 

• script.anonymous() 

• script.anonymous.run() 
 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-6 707B-901-01 Rev. B / January 2015 

 

Run a named script 

You can run any named script that is in the run-time environment using one of the following 
commands: 

• scriptVar() 

• scriptVar.run() 

Where: scriptVar is the user-defined name of the script. 

To run a named script from TSB Embedded, select the script from the User Scripts list and click Run. 

When a script is named, it can be accessed using the global variable scriptVar. 
 

Example: Run a named script 
 

test3() If the script test3 is loaded into the 
run-time environment, the instrument 
executes test3. 

 

Scripts that run automatically 

You can set up scripts to run automatically when you power on the instrument. To do this, either set 
the autorun attribute for the script to yes (see Autorun scripts (on page 6-6)), or create a script with 
the script name autoexec (see Autoexec script (on page 6-7)). 

 

Autorun scripts 

Autorun scripts run automatically when the instrument is turned on. You can set any number of scripts 
to autorun. The run order for autorun scripts is arbitrary, so make sure the run order is not important. 

As shown in the example below, you can set a script to run automatically by setting the .autorun 
attribute of the script to "yes" and then saving the script. 

 

Example: 
scriptVar.autorun = "yes" 
scriptVar.save() 

Where: scriptVar is the user-defined name of the script. 
 

To disable autorun, set the script's .autorun attribute to "no" and then save the script. 
 

 
The scriptVar.save() command saves the script to nonvolatile memory, which makes the 
change persistent through a power cycle. See Save a user script to nonvolatile memory (on page 6-
8) for more detail. 

 

Example: Set a script to run automatically 
 

test5.autorun = "yes" 
test5.save() 

Assume a script named test5 is in the 
run-time environment. 
The next time the instrument is turned on, 
test5 script automatically loads and 
runs. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-7 

 

Autoexec script 

The autoexec script runs automatically when the instrument is turned on. It runs after all the scripts 
have loaded and any scripts marked as autorun have run. 

To create a script that executes automatically, create and load a new script and name it autoexec. 
See Create and load a script (on page 6-3). 

 

You must save the autoexec script to nonvolatile memory if you want to use it after instrument power 
has been turned off and then turned on again. See Save a user script to nonvolatile memory (on 
page 6-8) for more detail. 

 

Example: Creating an autoexec script with loadscript command 
 

loadscript autoexec 
display.clear() 
display.settext("Hello from autoexec") 
endscript 
autoexec.save() 

Creates the script autoexec. 
Saves the autoexec script to nonvolatile 
memory. The next time the instrument is 
turned on, "Hello from autoexec" is 
displayed. 

 

Example: Creating an autoexec script using TSB Embedded 
 

display.clear() 
display.settext("Hello from autoexec") 

In the TSP Script box, enter autoexec. 
Enter the code in the entry box. 
Click Save Script. 
Creates a new script that clears the 
display when the instrument is turned on 
and displays "Hello from autoexec." 

 

Working with scripts in nonvolatile memory 
The Fundamentals of scripting for TSP (on page 6-1) section in this manual describes working with 
scripts, primarily in the run-time environment. You can also work with scripts in nonvolatile memory. 

 

The run-time environment and nonvolatile memory are separate storage areas in the instrument. The 
information in the run-time environment is lost when the instrument is turned off. The nonvolatile 
memory remains intact when the instrument is turned off. When the instrument is turned on, 
information in nonvolatile memory is loaded into the run-time environment. 

 

Save a user script 

You can save scripts to nonvolatile memory using commands or TSB Embedded. 

Only named scripts can be saved to nonvolatile memory. The anonymous script must be named 
before it can be saved to nonvolatile memory. 

 
If a script is not saved to nonvolatile memory, the script is lost when the instrument is turned off. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-8 707B-901-01 Rev. B / January 2015 

 

To save a script to nonvolatile memory: 
1. Create and load a named script (see Create and load a script (on page 6-3)). 
2. Do one of the following: 

• Send the command scriptVar.save(), where scriptVar is the name of the script. 
• In TSB Embedded, click Save Script. 

 

Example: Save a user script to nonvolatile memory 
 

test1.save() Assume a script named test1 
has been loaded. test1 is 
saved into nonvolatile memory. 

 

To save a script to an external USB drive: 

 
When you save a script to a USB flash drive, you do not need to specify a file extension. The 
extension .tsp is automatically added. If you do specify a file extension, it must be .tsp. An error 
will occur if you use any other file extension. 

1. Load a script (see Create and load a script (on page 6-3)). 
2. Send the command scriptVar.save("/usb1/filename.tsp"), where scriptVar is the 

variable referencing the script and filename.tsp is the name of the file. 

 
You can also use TSB Embedded to save a script to a USB flash drive (or any accessible drive) 
installed on your computer. From TSB Embedded, load the script and click Export to PC. 

 

Save the anonymous script as a named script 

To save the anonymous script to nonvolatile memory, you must name it first. 
To save the anonymous script as a named script: 
1. To name the script, send the command script.anonymous.name = "myTest" (where 

myTest is the name of the script). 
2. Send the script.anonymous.save() command to save myTest to nonvolatile memory. 

 

Delete user scripts 

 
These steps remove a script from nonvolatile memory. To completely remove a script from the 
instrument, there are additional steps you must take. See Delete user scripts from the instrument (on 
page 6-41). 

 

To delete a script from nonvolatile memory using a remote interface: 

You can delete the script from nonvolatile memory by sending either of the following commands: 

• script.delete("name") 

• script.user.delete("name") 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-9 

 

Where: name is the user-defined name of the script. 

To delete a script from nonvolatile memory using TSB Embedded: 
1. In TSB Embedded, select the script from the User Scripts list. 
2. Click Delete. There is no confirmation message. 

 

Example: Delete a user script from nonvolatile memory 
 

script.delete("test8") Delete a user script named test8 
from nonvolatile memory. 

 

Programming example 
 

 

Interactive script 

An interactive script prompts the operator to input values using the instrument front panel. The 
following example script uses display messages to prompt the operator to: 

• Enter the digital I/O line on which to output a trigger 
• Enter the output trigger pulsewidth 

After the output trigger occurs, the front display displays a message to the operator.  

When an input prompt is displayed, the script waits until the operator inputs the parameter or presses 
the ENTER key. 

The example shown here assumes that you are using TSB or TSB Embedded. If you are using a 
remote interface, you need to add the loadscript and endscript commands to the example 
code. See Load a script by sending commands over the remote interface (on page 6-4) for details. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-10 707B-901-01 Rev. B / January 2015 

 

-- Clear the display. 
display.clear() 
 
-- Prompt user for digital I/O line on which to output trigger. 
myDigioLine = display.menu("Select digio line", "1 2 3 4 5 6 7 8 9") 
 
-- Convert user input to a number. 
intMyDigioLine = tonumber(myDigioLine) 
 
-- Prompt user for digital output trigger mode. 
myDigioEdge = display.menu("Select digio mode", "Rising Falling") 
if myDigioEdge == "Rising" then 
   edgeMode = digio.TRIG_RISING 
else 
   edgeMode = digio.TRIG_FALLING 
end 
 
-- Prompt user for output trigger pulsewidth. 
myPulseWidth = display.prompt( 

"000.0", "us", "Enter trigger pulsewidth", 10, 10, 100) 
 
-- Scale the entered pulsewidth. 
myPulseWidth = myPulseWidth * 1e-6 
 
-- Generate the pulse. 
digio.trigger[intMyDigioLine].mode = edgeMode 
digio.trigger[intMyDigioLine].pulsewidth = myPulseWidth 
digio.trigger[intMyDigioLine].assert() 
 
-- Alert the user through the display that the  
-- output trigger has occurred. 
display.setcursor(1, 1) 
display.settext("Trigger asserted $Non digital I/O line " .. intMyDigioLine) 
 
-- Wait five seconds and then return to main screen. 
delay(5) 
display.screen = display.MAIN  

 

Fundamentals of programming for TSP 

Introduction 
To conduct a test, a computer (controller) is programmed to send sequences of commands to an 
instrument. The controller orchestrates the actions of the instrumentation. The controller is typically 
programmed to request measurement results from the instrumentation and make test sequence 
decisions based on those measurements.  

To take advantage of the advanced features of the instrument, you can add programming commands 
to your scripts. Programming commands control script execution and provide tools such as variables, 
functions, branching, and loop control. 

The Test Script Processor (TSP®) scripting engine is a Lua interpreter. In TSP-enabled instruments, 
the Lua programming language has been extended with Keithley-specific instrument control 
commands. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-11 

 

What is Lua? 
Lua is a programming language that can be used with TSP-enabled instruments. Lua is an efficient 
language with simple syntax that is easy to learn. 

Lua is also a scripting language, which means that scripts are compiled and run when they are sent 
to the instrument. You do not compile them before sending them to the instrument. 

 

Lua basics 
This section contains the basics about the Lua programming language to allow you to start adding 
Lua programming commands to your scripts quickly. 

For more information about Lua, see the Lua website (http://www.lua.org). Another source of useful 
information is the Lua users group (http://lua-users.org), created for and by users of Lua programming 
language. 

 

Comments 
Comments start anywhere outside a string with a double hyphen (--). If the text immediately after a 
double hyphen (--) is anything other than double left brackets ([[), the comment is a short comment, 
which continues only until the end of the line. If double left brackets follow the double hyphen (--[[), 
it is a long comment, which continues until the corresponding double right brackets (]]) close the 
comment. Long comments may continue for several lines and may contain nested [[ . . . ]] pairs. 
The table below shows how to use code comments. 

Using code comments 

Type of 
comment 

Comment 
delimiters 

Usage Example 

Short 
comment 

 -- Use when the 
comment text fits 
on a single line.  

--Turn off the front-panel display. 

Long 
comment 

--[[     ]] Use when the 
comment text is 
longer than one 
line. 

--[[Display a menu with three menu items. 
If the second menu item is selected, 
the selection will be given the value 
Test2.]] 

 

Function and variable name restrictions 
You cannot use Lua reserved words and top level command names for function or variable names. 

You cannot use the following Lua reserved words for function or variable names. 

Lua reserved words 
and for or 

break function repeat 

do if return 
else in then 
elseif local true 
end nil until 
false not while 

 

http://www.lua.org/
http://lua-users.org/


Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-12 707B-901-01 Rev. B / January 2015 

 

You also cannot use top-level command names as variable names. If you use these names, it will 
result in the loss of use of the commands. For example, if you send the command digio = 5, you 
cannot access the digio.* commands until you turn the instrument power off and then turn it on 
again. These groups include: 

 

Top level command names 
beeper localnode 
bit opc 
channel reset 
dataqueue scan 
delay slot 
digio status 
display timer 
errorqueue trigger 
eventlog tsplink 
exit tspnet 
format userstring 
gpib waitcomplete 
lan  

 
 

Values and variable types 
In Lua, you can use variables to store values in the run-time environment for later use. 

Lua is a dynamically-typed language; the type of the variable is determined by the value that is 
assigned to the variable. 

Variables in Lua are assumed to be global unless they are explicitly declared to be local. A global 
variable is accessible by all commands. Global variables do not exist until they have been assigned a 
value. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-13 

 

Variable types 
Variables can be one of the following types. 

Variable types and values 

Variable type returned Value Notes 

"nil" not declared The type of the value nil, whose 
main property is to be different from 
any other value; usually it represents 
the absence of a useful value.  

"boolean" true or false Boolean is the type of the values 
false and true. In Lua, both nil 
and false make a condition 
false; any other value makes it 
true. 

"number" number All numbers are real numbers; there 
is no distinction between integers 
and floating-point numbers. 

"string" sequence of words or 
characters 

 

"function" a block of code Functions perform a task or compute 
and return values. 

"table" an array New tables are created with { } 
braces. For example, 
{1, 2, 3.00e0}. 

"userdata" variables Allows arbitrary program data to be 
stored in Lua variables. 

"thread" line of execution  
 

To determine the type of a variable, you can call the type() function, as shown in the examples 
below. 

The output you get from these examples may vary depending on the data format that is set. 
 

Example: Nil 
 

x = nil 
print(x, type(x)) 

nil      nil 

 

Example: Boolean 
 

y = false 
print(y, type(y)) 

false      boolean 

 

Example: String and number 
 

x = "123" 
print(x, type(x)) 
 
x = x + 7 
print(x, type(x)) 

123      string 
 
 
Adding a number to x forces its type to 
number. 
1.30     number 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-14 707B-901-01 Rev. B / January 2015 

 

Example: Function 
 

function add_two(first_value, 
   second_value) 
   return first_value + second_value 
end 
print(add_two(3, 4), type(add_two)) 

7     function 

 

Example: Table 
 

atable = {1, 2, 3, 4} 
print(atable, type(atable)) 
print(atable[1]) 
print(atable[4]) 

Defines a table with four numeric 
elements. 
Note that the "table" value (shown here 
as a096cd30) will vary. 
 
table: a096cd30      table 
1 
4 

 

Delete a global variable 
To delete a global variable, assign nil to the global variable. This removes the global variable from 
the run-time environment. 

 

Functions 
With Lua, you can group commands and statements using the function keyword. Functions can 
take zero, one, or multiple parameters, and they return zero, one, or multiple values.  

You can use functions to form expressions that calculate and return a value. Functions can also act 
as statements that execute specific tasks. 

 

Functions are first-class values in Lua. That means that functions can be stored in variables, passed 
as arguments to other functions, and returned as results. They can also be stored in tables.  

Note that when a function is defined, it is stored in the run-time environment. Like all data that is 
stored in the run-time environment, the function persists until it is removed from the run-time 
environment, is overwritten, or the instrument is turned off. 

 

Create functions using the function keyword 

Functions are created with a message or in Lua code in either of the following forms: 
function myFunction(parameterX) functionBody end 
myFunction = function (parameterX) functionBody end 

 

Where: 

• myFunction: The name of the function. 

• parameterX: Parameter names. To use multiple parameters, separate the names with commas. 

• functionBody: The code that is executed when the function is called. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-15 

 

To execute a function, substitute appropriate values for parameterX and insert them into a message 
formatted as: 
myFunction(valueForParameterX, valueForParameterY) 

Where valueForParameterX and valueForParameterY represent the values to be passed to 
the function call for the given parameters. 

The output you get from these examples will vary depending on the data format settings of the 
instrument. 

 

Example 1 
 

function add_two(first_value, 
second_value) 

   return first_value + second_value 
end 
print(add_two(3, 4)) 

Creates a variable named add_two that 
has a variable type of function. 
Output: 
7 

 
 

Example 2 
 

add_three = function(first_value, 
   second_value, third_value) 
   return first_value + second_value + 
      third_value 
end 
print(add_three(3, 4, 5)) 

Creates a variable named add_three 
that has a variable type of function. 
Output: 
12 

 
 

Example 3 
 

function sum_diff_ratio(first_value, 
   second_value) 
   psum = first_value + second_value 
   pdif = first_value - second_value 
   prat = first_value / second_value 
   return psum, pdif, prat 
end 
sum, diff, ratio = sum_diff_ratio(2, 3) 
print(sum) 
print(diff) 
print(ratio) 

Returns multiple parameters (sum, 
difference, and ratio of the two numbers 
passed to it). 
Output: 
5 
-1 
0.66666666666667 

 

Create functions using scripts 

You can use scripts to define functions. Scripts that define a function are like any other script: They 
do not cause any action to be performed on the instrument until they are executed. The global 
variable of the function does not exist until the script that created the function is executed. 

A script can consist of one or more functions. Once a script has been run, the computer can call 
functions that are in the script directly. 

  



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-16 707B-901-01 Rev. B / January 2015 

 

The following steps use TSB Embedded. You can also use the loadscript and endscript 
commands to create the script over the remote interface. 

Steps to create a function using a script: 
1. In TSB Embedded, enter a name into the TSP Script box. For example, type MakeMyFunction. 
2. Enter the function as the body of the script. This example concatenates two strings: 

MyFunction = function (who) 
   print("Hello " .. who) 
end 

3. Click Save Script. 
MakeMyFunction is now on the instrument in a global variable with the same name as the script 
(MakeMyFunction). However, the function defined in the script does not yet exist because the 
script has not been executed. 

4. Run the script as a function. For this example, send: 
MakeMyFunction() 
This instructs the instrument to run the script, which creates the MyFunction global variable. 
This variable is of the type "function" (see Variable types (on page 6-13)). 

5. Run the new function with a value. 
MyFunction("world") 
The response message is: 
Hello world 

 

Group commands using the function keyword 

The following script contains instrument commands that display the name of the person that is using 
the script on the front panel of the instrument. It takes one parameter to represent this name. When 
this script is run, the function is loaded in memory. Once loaded into memory, you can call the 
function outside of the script to execute it. 

When calling the function, you must specify a string for the name argument of the function. For 
example, to set the name to John, call the function as follows:  
myDisplay("John") 

 

Example: User script 
 

User script created in Test Script Builder or 
TSB Embedded 

User script created in user's own program 

 
function myDisplay(name) 
   display.clear() 
   display.settext( 
      name .. "$N is here!") 
end 

loadscript 
function myDisplay(name) 
   display.clear() 
   display.settext( 
      name .. " $N is here!") 
end 
endscript 

 

Operators 
You can compare and manipulate Lua variables and constants using operators. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-17 

 

 

Arithmetic operators 

Operator Description 

+ addition 
- subtraction 
* multiplication 
/ division 
- negation (for example, c = −a) 
^ exponentiation 

 
 
 

Relational operators 

Operator Description 

< less than 
> greater than 
<= less than or equal 
>= greater than or equal 
~= 
 

not equal 

== equal 
 

Logical operators 

The logical operators in Lua are and, or, and not. All logical operators consider both false and 
nil as false and anything else as true. 

The operator not always returns false or true. 
 

The conjunction operator and returns its first argument if the first argument is false or nil; 
otherwise, and returns its second argument. The disjunction operator or returns its first argument if 
this value is different from nil and false; otherwise, or returns its second argument. Both and and 
or use shortcut evaluation, that is, the second operand is evaluated only if necessary. 

 

The example output you get may vary depending on the data format settings of the instrument. 

Example 
 

print(10 or errorqueue.next()) 
print(nil or "a") 
print(nil and 10) 
print(false and errorqueue.next()) 
print(false and nil) 
print(false or nil) 
print(10 and 20) 

1.0000000e+01 
a 
nil 
false 
false 
nil 
2.0000000e+01 

 

String concatenation 
 

String operators 

Operator Description 

.. Concatenates two strings. If either argument is a number, it is coerced to a string (in 
a reasonable format) before concatenation. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-18 707B-901-01 Rev. B / January 2015 

 

Example: Concatenation 
 

print(2 .. 3) 
print("Hello " .. "World") 

23 
Hello World 

 
 

Operator precedence 

Operator precedence in Lua follows the order below (from higher to lower priority): 

• ^ (exponentiation) 

• not, - (unary) 

• *, / 

• +, - 

• .. (concatenation) 

• <, >, <=, >=, ~=, !=, == 

• and 

• or 
 

You can use parentheses to change the precedences in an expression. The concatenation ("..") and 
exponentiation ("^") operators are right associative. All other binary operators are left associative. The 
examples below show equivalent expressions. 

 
Equivalent expressions 
reading + offset < testValue/2+0.5 = (reading + offset) < 

((testValue/2)+0.5) 

3+reading^2*4 = 3+((reading^2)*4) 

Rdg < maxRdg and lastRdg <= 
   expectedRdg 

= (Rdg < maxRdg) and (lastRdg <= 
expectedRdg) 

-reading^2 = -(reading^2) 

reading^testAdjustment^2  = reading^(testAdjustment^2) 

 
 

Conditional branching 
Lua uses the if, else, elseif, then, and end keywords to do conditional branching. 

Note that in Lua, nil and false are false and everything else is true. Zero (0) is true in Lua. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-19 

 

The syntax of a conditional block is as follows: 
if expression then 
   block 
elseif expression then 
   block 
else 
   block 
end 

Where: 

• expression is Lua code that evaluates to either true or false 

• block consists of one or more Lua statements 
 

Example: If 
 

if 0 then 
   print("Zero is true!") 
else 
   print("Zero is false.") 
end 

Output: 
Zero is true! 

 
 

Example: Comparison 
 

x = 1 
y = 2 
if x and y then 
   print("Both x and y are true") 
end 

Output: 
Both x and y are true 

 
 

Example: If and else 
 

x = 2 
if not x then 
   print("This is from the if block") 
else 
   print("This is from the else block") 
end 

Output: 
This is from the else 
block 

 
 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-20 707B-901-01 Rev. B / January 2015 

 

Example: Else and elseif 
 

x = 1 
y = 2 
if x and y then 
   print("'if' expression 2 was not false.") 
end 
 
if x or y then 
   print("'if' expression 3 was not false.") 
end 
 
if not x then 
   print("'if' expression 4 was not false.") 
else 
   print("'if' expression 4 was false.") 
end 
 
if x == 10 then 
   print("x = 10") 
elseif y > 2 then 
   print("y > 2") 
else 
   print("x is not equal to 10, and y is not greater than 2.") 
end 

Output: 
'if' expression 2 was not false. 
'if' expression 3 was not false. 
'if' expression 4 was false. 
x is not equal to 10, and y is not greater than 2. 

\ 

Loop control 
If you need to repeat code execution, you can use the Lua while, repeat, and for control 
structures. To exit a loop, you can use the break keyword. 

 

While loops 

To use conditional expressions to determine whether to execute or end a loop, you use while loops. 
These loops are similar to Conditional branching (on page 6-18) statements. 
while expression do 
   block 
end 

Where: 

• expression is Lua code that evaluates to either true or false 

• block consists of one or more Lua statements 

The output you get from this example may vary depending on the data format settings of the 
instrument. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-21 

 

Example: While 
 

list = { 
   "One", "Two", "Three", "Four", "Five", "Six"} 
print("Count list elements on numeric index:") 
element = 1 
while list[element] do 
   print(element, list[element]) 
   element = element + 1 
end 

This loop exits when list[element] 
= nil. 
Output: 
Count list elements on 
   numeric index: 
1   One 
2   Two 
3   Three 
4   Four 
5   Five 
6   Six 

 
 
 

Repeat until loops 

To repeat a command, you use the repeat ... until statement. The body of a repeat statement 
always executes at least once. It stops repeating when the conditions of the until clause are met. 
repeat 
   block 
until expression 

Where: 

• block consists of one or more Lua statements 

• expression is Lua code that evaluates to either true or false 

The output you get from this example may vary depending on the data format settings of the 
instrument. 

 

Example: Repeat until 
 

list = { 
   "One", "Two", "Three", "Four", "Five", "Six"} 
print("Count elements in list using repeat:") 
element = 1 
repeat 
   print(element, list[element]) 
   element = element + 1 
until not list[element] 

Output: 
Count elements in list 
   using repeat: 
1  One 
2  Two 
3  Three 
4  Four 
5  Five 
6  Six 

 
 

For loops 

There are two variations of for statements supported in Lua: numeric and generic. 

In a for loop, the loop expressions are evaluated once, before the loop starts. 
 
The output you get from these examples may vary depending on the data format settings of the 
instrument. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-22 707B-901-01 Rev. B / January 2015 

 

Example: Numeric for 
 

list = {"One", "Two", "Three", "Four", "Five", "Six"} 
---------- For loop ----------- 
print("Counting from one to three:") 
for element = 1, 3 do 
   print(element, list[element]) 
end 
print("Counting from one to four, in steps of two:") 
for element = 1, 4, 2 do 
   print(element, list[element]) 
end 

The numeric for loop repeats a block of code while a control variable runs through an 
arithmetic progression. 
Output: 
Counting from one to three: 
1   One 
2   Two 
3   Three 
Counting from one to four, in steps of two: 
1   One 
3   Three 

 

Example: Generic for 
 

days = {"Sunday",  
   "Monday",     "Tuesday", 
   "Wednesday",  "Thursday", 
   "Friday",     "Saturday"}  
  
for i, v in ipairs(days) do  
   print(days[i], i, v)  
end 

The generic for statement works by using functions called iterators. On each iteration, the 
iterator function is called to produce a new value, stopping when this new value is nil. 
Output: 
Sunday     1    Sunday 
Monday     2    Monday 
Tuesday    3    Tuesday 
Wednesday  4    Wednesday 
Thursday   5    Thursday 
Friday     6    Friday 
Saturday   7    Saturday 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-23 

 

Break 

The break statement can be used to terminate the execution of a while, repeat, or for loop, 
skipping to the next statement after the loop. A break ends the innermost enclosing loop. 

Return and break statements can only be written as the last statement of a block. If it is necessary to 
return or break in the middle of a block, an explicit inner block can be used. 

The output you get from these examples may vary depending on the data format settings of the 
instrument. 

Example: Break with while statement 
 

local numTable = {5, 4, 3, 2, 1} 
local k = table.getn(numTable) 
local breakValue = 3 
while k > 0 do 
   if numTable[k] == breakValue then 
      print("Going to break and k = ", k) 
      break 
   end  
   k = k - 1 
end 
if k == 0 then 
   print("Break value not found") 
end  

This example defines a break value 
(breakValue) so that the break 
statement is used to exit the while loop 
before the value of k reaches 0. 
Output: 
Going to break and k = 3 
 
 

 
 

Example: Break with while statement enclosed by comment delimiters 
 

local numTable = {5, 4, 3, 2, 1} 
local k = table.getn(numTable) 
--local breakValue = 3 
while k > 0 do 
   if numTable[k] == breakValue then 
      print("Going to break and k = ", k) 
      break 
   end  
   k = k - 1 
end  
if k == 0 then 
   print("Break value not found") 
end 

This example defines a break value 
(breakValue), but the break value 
line is preceded by comment delimiters 
so that the break value is not 
assigned, and the code reaches the 
value 0 to exit the while loop.  
Output: 
Break value not found 

 
 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-24 707B-901-01 Rev. B / January 2015 

 

Example: Break with infinite loop 
 

a, b = 0, 1 
while true do 
   print(a, b) 
   a, b = b, a + b 
   if a > 500 then  
      break 
   end 
end 

This example uses a break statement 
that causes the while loop to exit if the 
value of a becomes greater than 500. 
Output: 
0     1 
1     1 
1     2 
2     3 
3     5 
5     8 
8     13 
13    21 
21    34 
34    55 
55    89 
89    144 
144   233 
233   377 
377   610 

 

Tables and arrays 
Lua makes extensive use of the data type table, which is a flexible array-like data type. Table indices 
start with 1. Tables can be indexed not only with numbers, but with any value except nil. Tables can 
be heterogeneous, which means that they can contain values of all types except nil. 

Tables are the sole data structuring mechanism in Lua. They may be used to represent ordinary 
arrays, symbol tables, sets, records, graphs, trees, and so on. To represent records, Lua uses the 
field name as an index. The language supports this representation by providing a.name as an easier 
way to express a["name"]. 

The output you get from this example may vary depending on the data format settings of the 
instrument. 

Example: Loop array 
 

atable = {1, 2, 3, 4} 
i = 1 
while atable[i] do 
   print(atable[i]) 
   i = i + 1 
end 

Defines a table with four numeric 
elements. 
Loops through the array and prints 
each element. 
The Boolean value of 
atable[index] evaluates to true if 
there is an element at that index. If 
there is no element at that index, nil 
is returned (nil is considered to be 
false). 
Output: 
1 
2 
3 
4 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-25 

 

Standard libraries 
In addition to the standard programming constructs described in this document, Lua includes 
standard libraries that contain useful functions for string manipulation, mathematics, and related 
functions. Test Script Processor (TSP®) scripting engine instruments also include instrument control 
extension libraries, which provide programming interfaces to the instrumentation that can be 
accessed by the TSP scripting engine. These libraries are automatically loaded when the TSP 
scripting engine starts and do not need to be managed by the programmer. 

The following topics provide information on some of the basic Lua standard libraries. For additional 
information, see the Lua website (http://www.lua.org). 

When referring to the Lua website, please be aware that the TSP scripting engine uses Lua 5.0.2. 
 

Base library functions 
Base library functions 

Function Description 

collectgarbage() 
collectgarbage(limit) 

Sets the garbage-collection threshold to the given limit (in 
kilobytes) and checks it against the byte counter. If the new 
threshold is smaller than the byte counter, Lua immediately 
runs the garbage collector. If there is no limit parameter, it 
defaults to zero (0), which forces a garbage-collection cycle. 
See the "Lua memory management" topic below for more 
information. 

gcinfo() Returns the number of kilobytes of dynamic memory that the 
Test Script Processor (TSP®) scripting engine is using, and 
returns the present garbage collector threshold (also in 
kilobytes). See the "Lua memory management" topic below for 
more information. 

 

tonumber(x) 
tonumber(x, base) 

Returns x converted to a number. If x is already a number, or a 
convertible string, the number is returned; otherwise, it returns 
nil. 
An optional argument specifies the base to use when 
interpreting the numeral. The base may be any integer from 2 to 
36, inclusive. In bases above 10, the letter A (in either upper or 
lower case) represents 10, B represents 11, and so forth, with Z 
representing 35. In base 10, the default, the number may have 
a decimal part, as well as an optional exponent. In other bases, 
only unsigned integers are accepted. 

tostring(x) Receives an argument of any type and converts it to a string in 
a reasonable format. 

type(v) Returns (as a string) the type of its only argument. The possible 
results of this function are "nil" (a string, not the value nil), 
"number", "string", "boolean", "table", "function", 
"thread", and "userdata". 

 
 

http://www.lua.org/


Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-26 707B-901-01 Rev. B / January 2015 

 

Lua memory management 

Lua automatically manages memory, which means you do not have to allocate memory for new 
objects and free it when the objects are no longer needed. Lua occasionally runs a garbage collector 
to collect all objects that are no longer accessible from Lua. All objects in Lua are subject to automatic 
management, including tables, variables, functions, threads, and strings. 

Lua uses two numbers to control its garbage-collection cycles. One number counts how many bytes 
of dynamic memory Lua is using; the other is a threshold. When the number of bytes crosses the 
threshold, Lua runs the garbage collector, which reclaims the memory of all inaccessible objects. The 
byte counter is adjusted and the threshold is reset to twice the new value of the byte counter. 

 

String library functions 
This library provides generic functions for string manipulation, such as finding and extracting 
substrings. When indexing a string in Lua, the first character is at position 1 (not 0, as in ANSI C). 
Indices may be negative and are interpreted as indexing backward from the end of the string. Thus, 
the last character is at position -1, and so on. 

String library functions 

Function Description 

string.byte(s) 
string.byte(s, i) 
string.byte(s, i, j) 

Returns the internal numeric codes of the characters s[i], 
s[i+1], ···, s[j]. The default value for i is 1; the default 
value for j is i. 

string.char(···) Receives zero or more integers separated by commas. Returns a 
string with length equal to the number of arguments, in which each 
character has the internal numeric code equal to its corresponding 
argument. 

string.format( 
   formatstring, ...) 

Returns a formatted version of its variable number of arguments 
following the description given in its first argument, which must be 
a string. The format string follows the same rules as the printf 
family of standard C functions. The only differences are that the 
modifiers *, l, L, n, p, and h are not supported and there is an 
extra option, q. The q option formats a string in a form suitable to 
be safely read back by the Lua interpreter; the string is written 
between double quotes, and all double quotes, newlines, 
embedded zeros, and backslashes in the string are correctly 
escaped when written. 
For example, the call: 
string.format('%q', 'a string with "quotes" and 

\n new line') 
will produce the string:  
"a string with \"quotes\" and \ 

new line" 
The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number 
as argument. q and s expect a string. This function does not 
accept string values containing embedded zeros, except as 
arguments to the q option. 

 

string.len(s) 
 

Receives a string and returns its length. The empty string "" has 
length 0. Embedded zeros are counted, so "a\000bc\000" has 
length 5. 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-27 

 

String library functions 

Function Description 

string.lower(s) Receives a string and returns a copy of this string with all 
uppercase letters changed to lowercase. All other characters are 
left unchanged. 

string.rep(s, n) Returns a string that is the concatenation of n copies of the 
string s. 

string.sub(s, i) 
string.sub(s, i, j) 

Returns the substring of s that starts at i and continues until j; i 
and j can be negative. If j is absent, it is assumed to be equal to 
-1 (which is the same as the string length). In particular, the call 
string.sub(s, 1, j) returns a prefix of s with length j, and 
string.sub(s, -i) returns a suffix of s with length i. 

string.upper(s) Receives a string and returns a copy of this string with all 
lowercase letters changed to uppercase. All other characters are 
left unchanged. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-28 707B-901-01 Rev. B / January 2015 

 

Math library functions 
This library is an interface to most of the functions of the ANSI C math library. All trigonometric 
functions work in radians. The functions math.deg() and math.rad() convert between radians 
and degrees. 

 

Math library functions 

Function Description 

math.abs(x) Returns the absolute value of x. 
math.acos(x) Returns the arc cosine of x. 
math.asin(x) Returns the arc sine of x. 
math.atan(x) Returns the arc tangent of x. 
math.atan2(y, x) Returns the arc tangent of y/x, but uses the signs of both parameters to 

find the quadrant of the result (it also handles correctly the case of x 
being zero). 

math.ceil(x) Returns the smallest integer larger than or equal to x. 
math.cos(x) Returns the cosine of x. 
math.deg(x) Returns the angle x (given in radians) in degrees. 
math.exp(x) Returns the value ex. 
math.floor(x) Returns the largest integer smaller than or equal to x. 
math.frexp(x) Returns m and e such that x = m2e, where e is an integer and the 

absolute value of m is in the range [0.5, 1] (or zero when x is zero). 
math.ldexp(m, e) Returns m2e (e should be an integer). 
math.log(x) Returns the natural logarithm of x. 
math.log10(x) Returns the base-10 logarithm of x. 
math.max(x, ...) Returns the maximum value among its arguments. 
math.min(x, ...) Returns the minimum value among its arguments. 
math.pi The value of  π (3.141592654). 

math.pow(x, y) Returns xy (you can also use the expression x^y to compute this value). 

math.rad(x) Returns the angle x (given in degrees) in radians. 
math.random() 
math.random(m) 
math.random(m, n) 

This function is an interface to the simple pseudorandom generator 
function rand provided by ANSI C. 
When called without arguments, returns a uniform pseudorandom real 
number in the range [0,1]. When called with an integer number m, 
math.random() returns a uniform pseudorandom integer in the 
range [1, m]. When called with two integer numbers m and n, 
math.random() returns a uniform pseudorandom integer in the 
range [m, n].  

math.randomseed(x) Sets x as the seed for the pseudorandom generator: equal seeds 
produce equal sequences of numbers. 

math.sin(x) Returns the sine of x. 
math.sqrt(x) Returns the square root of x. (You can also use the expression x^0.5 to 

compute this value.) 
math.tan(x) Returns the tangent of x. 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-29 

 

Programming example: Script with a for loop 
The following script puts a message on the front panel display slowly — one character at a time. The 
intent of this example is to demonstrate: 

• The use of a for loop 

• Simple display remote commands 
• Simple Lua string manipulation 

When creating a script using the TSB Embedded, you do not need the shell commands 
loadscript and endscript, as shown in the examples below. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-30 707B-901-01 Rev. B / January 2015 

 

 

Example: User script 
 

User script created in TSB Embedded User script created in user's own program 

 loadscript 

display.clear() 
myMessage = "Hello World!"  
for k = 1, string.len(myMessage) do 
   x = string.sub(myMessage, k, k) 
   display.settext(x) 
   print(x) 
   delay(1) 
end 

display.clear() 
myMessage = "Hello World!" 
for k = 1, string.len(myMessage) do 
   x = string.sub(myMessage, k, k) 
   display.settext(x) 
   print(x) 
   delay(1)  
end 

 endscript 

 

Example: Create channels with a for loop 

User script created in TSB Embedded User script created in user's own program 

 loadscript 

-- Pseudocard assignment necessary 
only 

-- if slot is empty 
-- slot[1].pseudocard = 7072 
for k = 1, 8, 2 do  
   chan1 = 
      channel.createspecifier(1, k, 1)  
   chan2 = 
      channel.createspecifier(1, k, 2)  
   print(chan1 .. "," .. chan2)  
   

scan.addimagestep(chan1..","..chan2
)  

end  

-- Pseudocard assignment necessary only 
-- if slot is empty 
-- slot[1].pseudocard = 7072 
for k = 1,8,2 do  
   chan1 = 
      channel.createspecifier(1, k, 1)  
   chan2 = 
      channel.createspecifier(1, k, 2)  
   print(chan1 .. "," .. chan2)  
   scan.addimagestep(chan1 .. "," .. 

chan2)  
end  

 endscript 

Output 

1A01,1A02 
1C01,1C02 
1E01,1E02 
1G01,1G02 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-31 

 

Using Test Script Builder (TSB) 
Keithley Instruments Test Script Builder (TSB) is a software tool that simplifies building test scripts. 
You can use TSB to perform the following operations:  

• Send remote commands and Lua statements  
• Receive responses (data) from commands and scripts 
• Upgrade instrument firmware 
• Create, manage, and run user scripts 
• Debug scripts 
• Import factory scripts to view or edit and convert to user scripts 

The Keithley Instruments Test Script Processor (TSP®) scripting engine is a Lua interpreter. In TSP-
enabled instruments, the Lua programming language has been extended with Keithley-specific 
instrument control commands. For more information about using the Lua scripting language with 
Keithley TSP-enabled instruments, refer to the Fundamentals of programming for TSP (on page 6-10) 
section. 

Keithley has created a collection of remote commands specifically for use with Keithley TSP-enabled 
instruments; for detailed information about those commands, refer to the "Command reference" 
section of the documentation for your specific instrument. You can build scripts from a combination of 
these commands and Lua programming statements. Scripts that you create are referred to as "user 
scripts." Also, some TSP-enabled instruments come with a number of built-in factory scripts. 

 

The following figure shows an example of the Test Script Builder. As shown, the workspace is divided 
into these areas: 

• Project navigator 
• Script editor 
• Outline view 
• Programming interaction 
• Help files 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-32 707B-901-01 Rev. B / January 2015 

 

Figure 83: Example of the Test Script Builder workspace 

 

 

Item Description 
1 Project navigator 
2 Script editor; right-click to run the script that is displayed 
3 Outline view 
4 Programming interaction 
5 Help; includes detailed information on using Test Script Builder 

 

Installing the TSB software 
The installation files for the Test Script Builder software are available for download on the Keithley 
Instruments support website (http://www.keithley.com/support). 

To install the Test Script Builder (TSB) software: 
1. Close all programs. 
2. Download the installer to your computer and double-click the .exe file to start the installation. 
3. Follow the on-screen instructions. 

 

http://www.keithley.com/support
http://www.keithley.com/support


Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-33 

 

Project navigator 
The project navigator consists of project folders and the script files (.tsp) created for each project. 
Each project folder can have one or more script files.  

To view the script files in a project folder, click the plus (+) next to the project folder. To hide the folder 
contents, click the minus (−) next to the project folder. 

You can download a TSP project to the instrument and run it, or you can run it from the TSB 
interface. 

 

Script editor 
The script editor is where you write, modify, and debug scripts.  

To open and display a script file, double-click the file name in the project navigator. You can have 
multiple script files open in the script editor at the same time. Each open script file is displayed on a 
separate tab. 

To display another script file that is already open, click the tab that contains the script in the script 
editor area. 

 
 

Programming interaction 
This part of the workspace is where you interact with the scripts that you are building in Test Script 
Builder (TSB). The actual contents of the programming interaction area of the workspace can vary.  

You can send commands from the Instrument Console command line, retrieve data, view variables 
and errors, and view and set breakpoints when using the debug feature. 

 

Advanced scripting for TSP 
The following topics describe advanced information that can help you understand how the Test Script 
Processor (TSP®) scripting engine works. 

 

Global variables and the script.user.scripts table 
When working with script commands, it is helpful to understand how scripts are handled in the 
instrument. 

Scripts are loaded into the run-time environment from nonvolatile memory when you turn the 
instrument on. They are also added to the run-time environment when you load them into the 
instrument. 

A script in the run-time environment can be: 

• A named script 
• An unnamed script 
• The anonymous script (which is a special unnamed script) 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-34 707B-901-01 Rev. B / January 2015 

 

Script names can be assigned by using the loadscript command or by defining the scriptVar 
parameter of the script.new() function. When a named script is loaded into the run-time 
environment: 

• A global variable with the same name is created so that you can reference the script more 
conveniently. 

• An entry for the script is added to the script.user.scripts table. 
 

When you create a script using the script.new() function without providing a name, the script is 
added to the run-time environment as an unnamed script. The script.new() function returns the 
script, but the script is not added to the script.user.scripts table. 

When the anonymous script is loaded, it does not have a global variable or an entry in the 
script.user.scripts table. If there is an existing anonymous script, it is replaced by the new 
one. 

When the instrument is turned off, everything in the run-time environment is deleted, including the 
scripts and global variables. 

See the figure below to see how the scripts, global variables, and script.user.scripts table 
interrelate. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-35 

 

Figure 84: Global variables and scripts in the runtime environment 

 
 

Create a script using the script.new() command 
Use the script.new() function to copy an existing script from the local node to a remote node. This 
enables parallel script execution.  

You can create a script with the script.new() function using the command: 
scriptVar = script.new(code, name) 

Where: 

scriptVar = Name of the variable created when the script is loaded into the run-time environment 
code = Content of the script 
name = Name that is added to the script.user.scripts table 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-36 707B-901-01 Rev. B / January 2015 

 

For example, to set up a two-second beep, you can send the command: 
beepTwoSec = script.new("beeper.enable = 1 beeper.beep(2, 2400)", "beepTwoSec") 

To run the new script, send the command: 
beepTwoSec() 

When you add beepTwoSec, the global variable and script.user.scripts table entries are 
made to the run-time environment as shown in the following figure. 

 

Figure 85: Runtime environment after creating a script 

 
 

Create an unnamed script using script.new() 

 
Unnamed scripts are not available from the front-panel display of the instrument. Only the 
anonymous script and named scripts are available from the front-panel display. 

 

When you create a script using script.new(), if you do not include name, the script is added to the 
run-time environment as an unnamed script. The script.new() function returns the script. You can 
assign it to a global variable, a local variable, or ignore the return value. A global variable is not 
automatically created. 

For example, send the following command: 
hello = script.new('display.clear() display.settext("hello")') 

A script is created in the run-time environment and a global variable is created that references the 
script. 

 

To run the script, send the command: 
hello() 

 

Figure 86: Create an unnamed script 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-37 

 

A script will become unnamed if you create a new script with the same name. In this circumstance, 
the name of the script in the script.user.scripts table is set to an empty string before it is 
replaced by the new script. 

 

For example, if beepTwoSec already exists in the script.user.scripts table and you sent: 
beepTwoSec1200 = script.new("beeper.enable = 1 beeper.beep(2, 1200)", "beepTwoSec") 

 

The following actions occur: 

• beepTwoSec1200 is added as a global variable. 

• The script that was in the run-time environment as beepTwoSec is changed to an unnamed script 
(the name attribute is set to an empty string). 

• The global variable beepTwoSec remains in the run-time environment unchanged (it points to the 
now unnamed script). 

• A new script named beepTwoSec is added to the run-time environment. 
 

In this example, you can access the new script by sending either of the following commands: 
beepTwoSec1200() 
script.user.scripts.beepTwoSec() 

 

To access the unnamed script, you can send the command: 
beepTwoSec() 

 

Figure 87: Create a new script with the name of an existing script 

 
 

Rename a script 
You can rename a script. You might want to rename a script if you need to name another script the 
same name as the existing script. You could also rename an existing script to be the autoexec script. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-38 707B-901-01 Rev. B / January 2015 

 

To change the name of a script, use the command: 
scriptVar.name = "renamedScript" 

Where:  
scriptVar = The global variable name 
"renamedScript" = The new name of the user script that was referenced by the scriptVar 

global variable 

After changing the name, you need to save the original script to save the change to the name 
attribute. 

 

For example: 
beepTwoSec.name = "beep2sec" 
beepTwoSec.save() 

Run the beep2sec script using the following command: 
script.user.scripts.beep2sec() 

 

If the new name is the same as a name that is already used for a script, the name of the existing 
script is removed and that script becomes unnamed. This removes the existing script if there are no 
other variables that reference the previous script. If variables do reference the existing script, the 
references remain intact. 

 

Changing the name of a script does not change the name of any variables that reference that script. 
After changing the name, the script is located in the script.user.scripts table under its new 
name. 

 

Figure 88: Rename script 

 
 

For example, to change the name of the script named test2 to be autoexec: 
test2.name = "autoexec" 
test2.save() 

The autoexec script runs automatically when the instrument is turned on. It runs after all the scripts 
have loaded and any scripts marked as autorun have run. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-39 

 

You can also use the script.new() and the scriptVar.source attribute commands to create a 
script with a new name. For example, if you had an existing script named test1, you could create a 
new script named test2 by sending the command: 
test2 = script.new(test1.source, "test2") 
See script.new() (on page 7-156). 

 

Retrieve a user script 
There are several ways to retrieve the source code of a user script: 

• One line at a time: Use scriptVar.list() to retrieve the source code one line at a time 

• Entire script: Use the print(scriptVar.source) command to retrieve the script source code 
as a single string 

• Use TSB Embedded 

See Create and load a script (on page 6-3) for information about recreating the script and loading it 
back into the instrument. 

 

To get a list of scripts that are in nonvolatile memory, use the script.user.catalog() (on page 7-160) 
function. 

 

Retrieve source code one line at a time 
To retrieve the source code one line at a time, send the scriptVar.list() command. When this 
command is received, the instrument sends the entire script. Each line of the script is sent as a 
separate response message. The output includes the loadscript or loadandrunscript and 
endscript keywords. 

After retrieving the source code, you can modify and save the command lines as a user script under 
the same name or a new name. 

To retrieve the source code of a script one line at a time, send the command: 
scriptVar.list() 

Where scriptVar is the name of the script. 
 

To retrieve the commands in the anonymous script, use script.anonymous.list(). 
 

Example: Retrieve source code one line at a time 
 

test.list() Retrieve the source of a script named "test". 
The output will look similar to: 
loadscript test 
display.clear() 
display.settext("This is a test") 
print("This is a test") 
endscript  

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-40 707B-901-01 Rev. B / January 2015 

 

Retrieve a script as a single string 
To retrieve the entire user script source code as a single string, use the scriptVar.source 
attribute. The loadscript or loadandrunscript and endscript keywords are not included. 

To retrieve the source code as a single string, send the command: 
print(scriptVar.source) 

Where scriptVar is the name of the script. 
 

Example: Retrieve the source code as a single string 
 

print(test.source) Retrieve the source of a script named 
"test". 
Output might look similar to: 
display.clear() 

display.settext("This is a 
test") print("This is a 
test") 

 
 

Retrieve a script using TSB Embedded 
In TSB Embedded, from the User Scripts list, select the script you want to retrieve. The contents of 
the script are displayed.  

 

Script example: Retrieve the content of scripts 
This set of examples: 

• Retrieves the source of a script using scriptVar.list() 

• Retrieves the source of a script using scriptVar.source 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-41 

 

Example: Retrieve the content of a script with scriptVar.list() 
 

test.list() 
 

Request a listing of the source of test. 
An example of the possible instrument output is 
shown here (note that the loadscript and 
endscript commands are included). 
 
Output: 
loadscript scriptVarTest 
listTones = {100, 400, 800} 
for index in listTones do 
   beeper.beep(.5, listTones[index]) 
end 
endscript 

Example: Retrieve the content of a script with scriptVar.source 
 

print(test.source) 
 

Request a listing of the source of the script named 
test. The loadscript and endscript 
commands are not included. 
An example of the possible instrument output is: 
listTones = {100, 400, 800} 
for index in listTones do 
   beeper.beep(.5, listTones[index]) 
end 

 

Delete user scripts from the instrument 
In most circumstances, you can delete a script using script.delete() (as described in Delete 
user scripts (on page 6-8)), and then turn the instrument off and back on again. However, if you 
cannot turn the instrument off, you can use the following steps to completely remove a script from the 
instrument. 

When you completely remove a script, you delete all references to the script from the run-time 
environment, the script.user.scripts table, and nonvolatile memory. 

 

To completely remove a script: 
1. Remove the script from the run-time environment. Set any variables that refer to the script to 

nil or assign the variables a different value. For example, to remove the script "beepTwoSec" 
from the run-time environment, send the following code: 
beepTwoSec = nil 

2. Remove the script from the script.user.scripts table. Set the name attribute to an empty 
string (""). This makes the script nameless, but does not make the script become the anonymous 
script. For example, to remove the script named "beepTwoSec", send the following code:  
script.user.scripts.beepTwoSec.name = "" 

3. Remove the script from nonvolatile memory. To delete the script from nonvolatile memory, 
send the command: 
script.delete("name") 
Where name is the name that the script was saved as. For example, to delete "beepTwoSec", 
you would send: 
script.delete("beepTwoSec") 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-42 707B-901-01 Rev. B / January 2015 

 

Restore a script to the run-time environment 
You can retrieve a script that was removed from the run-time environment but is still saved in 
nonvolatile memory. 

To restore a script from nonvolatile memory into the run-time environment, you can use 
script.restore("scriptName"), where scriptName is the user-defined name of the script to 
be restored. 

 

For example, to restore a user script named "test9" from nonvolatile memory: 
script.restore("test9") 

 

Memory considerations for the run-time environment 
The run-time environment has a fixed amount of memory for storing user scripts and other run-time 
information. 

You can check the amount of memory in the instrument using the memory.used() and 
memory.available()functions. These functions return the percentage of memory that is used or 
available. When you send this command, memory used or available is returned as a comma-
delimited string with percentages for used memory. 

The format is systemMemory, scriptMemory, patternMemory, where: 

• systemMemory: The percentage of memory used or available in the instrument 

• scriptMemory: The percentage of memory used or available in the instrument to store user 
scripts 

• patternMemory: The percentage of memory used or available in the instrument to store 
channel patterns 

 

For example, if you send the command: 
MemUsed = memory.used() 
print(MemUsed) 

You will get back a value such as 69.14, 0.16, 12.74, where 69.14 is the percentage of 
memory used in the instrument, 0.16 is the percentage used for script storage, and 12.74 is the 
percentage used for channel pattern storage. 

See memory.available() (on page 7-129) and memory.used() (on page 7-130) for more detail on 
using these functions. 

 

Some suggestions for increasing the available memory: 

• Turn the instrument off and on. This deletes scripts that have not been saved and reloads only scripts 
that have been stored in nonvolatile memory. 

• Remove unneeded scripts from nonvolatile memory. Scripts are loaded from nonvolatile memory into 
the run-time environment when the instrument is turned on. See Delete user scripts from the instrument 
(on page 6-41). 

• Reduce the number of TSP-Link® nodes. 
• Delete unneeded channel patterns (this affects only pattern memory, not instrument memory). See 

Channel patterns (on page 2-92). 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-43 

 

• Delete unneeded global variables from the run-time environment by setting them to nil. 
• Set the source attribute of all scripts to nil. 
• Adjust the collectgarbage() settings in Lua. See Lua memory management (on page 6-26) for 

information. 
• Review scripts to optimize their memory usage. In particular, you can see memory gains by changing 

string concatenation lines into a Lua table of string entries. You can then use the table.concat() 
function to create the final string concatenation. 

 

The example below shows an example of optimizing a channel pattern that consists of five channels. 

 

Example 

String concatenation lines Optimized with the table.concat function 

testPattern = "1A03"   
testPattern = testPattern .. ",1B03" 
testPattern = testPattern .. ",1C03" 
testPattern = testPattern .. ",1D03" 
testPattern = testPattern .. ",1E03" 
print(testPattern)  

testTable = { }    
testTable[1] = "1A03,"    
testTable[2] = "1B03,"    
testTable[3] = "1C03,"    
testTable[4] = "1D03,"  
testTable[5] = "1E03"    
testPattern = table.concat(testTable)    
print(testPattern)  

The output is: 
1A03,1B03,1C03,1D03,1E03 

The output is: 
1A03,1B03,1C03,1D03,1E03 

 

If the instrument encounters memory allocation errors when memory used is above 95 percent, the 
state of the instrument cannot be guaranteed. After attempting to save any important data, it is 
recommended that you turn off power to the instrument and turn it back on to return the instrument to 
a known state. Cycling power resets the run-time environment. Unsaved scripts and channel 
patterns will be lost. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-44 707B-901-01 Rev. B / January 2015 

 

TSP-Link system and running simultaneous test scripts 

TSP-Link system 
You can use the TSP-Link® expansion interface to expand your test system to include up to 32 
addressable TSP® enabled instruments that use the TSP-LINK®. The expanded system can be stand-
alone or computer-based. 

Stand-alone system: You can run a script from the front panel of any instrument (node) connected 
to the system. When a script is run, all nodes in the system go into remote operation (REM indicators 
turn on). The node running the script becomes the master and can control all of the other nodes, 
which become its subordinates. When the script is finished running, all the nodes in the system return 
to local operation (REM indicators turn off), and the master/subordinate relationship between nodes is 
dissolved. 

Computer-based system: You can use a computer and a LAN, GPIB, or RS-232 interface to any 
single node in the system. This node becomes the interface to the entire system. When a command 
is sent through this node, all nodes go into remote operation (REM indicators turn on). The node that 
receives the command becomes the master and can control all of the other nodes, which become its 
subordinates. In a computer-based system, the master/subordinate relationship between nodes can 
only be dissolved by performing an abort operation. 

 

TSP-Link nodes 
Each instrument (node) attached to the TSP-Link® network must be identified by assigning it a unique 
TSP-Link node number. 

Commands for remote nodes are stored in the node table. An individual node is accessed as 
node[N], where N is the node number assigned to the node.  

All TSP-accessible remote commands can be accessed as elements of the specific node. The 
following attributes are examples of items you can access: 

• node[N].model: The product model number string of the node. 

• node[N].revision: The product revision string of the node. 

• node[N].serialno: The product serial number string of the node. 

You do not need to know the node number of the node that is running a script. The variable 
localnode is an alias for the node entry of the node where the script is running. For example, if a 
script is running on node 5, you can use the global variable localnode as an alias for node[5]. 
With this in mind, to access the product model number for this example, use localnode.model. 

 

Connect the TSP-Link cable 
Connect the TSP-Link connector to one of the TSP-Link connectors on the rear panel of the 
instrument. 

The location of the TSP-Link connectors on the instrument are shown below. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-45 

 

For an example of setting up a TSP-Linked system, see "Working with a Series 2600A" in the 
Models 707B and 708B User's Manual. 

 

Figure 89: Model 708B rear panel TSP-Link connection 

 
 

Figure 90: Model 707B rear panel TSP-Link connection 

 
 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-46 707B-901-01 Rev. B / January 2015 

 

Initialization 
Before a TSP-Link® system can be used, it must be initialized. For initialization to succeed, each 
instrument in a TSP-Link system must be assigned a different node number. 

 

Assigning node numbers 
At the factory, each Models 707B and 708B instrument is assigned as node 1. The node number for 
each instrument is stored in its nonvolatile memory and remains in storage when the instrument is 
turned off. You can assign a node number to a Models 707B and 708B using the front panel or by 
using a remote command. Note that there can only be 32 physical nodes, but you can assign node 
numbers from 1 to 64. 

 

To assign a node number from the front panel of the instrument: 
1. Press the MENU key, then select TSPLINK > NODE. 
2. Press the navigation wheel  and select the desired number. 
3. Press the ENTER key to save the node number. 

 

To assign a node number using a remote command: 

Set the tsplink.node attribute of the instrument: 
tsplink.node = N 

Where: N = 1 to 64 

To determine the node number of an instrument, you can read the tsplink.node attribute by 
sending the following command: 
print(tsplink.node) 

The above print command outputs the node number. For example, if the node number is 1, a 1 is 
displayed. 

 

Remote programming 

The tsplink.node attribute is used to set the node number for an instrument: 
tsplink.node = N 

Where: N = 1 to 64 

The node number of an instrument can be determined by reading the tsplink.node attribute as 
follows: 
print(tsplink.node) 

The above print command will output the node number. For example, if the node number is 1, the 
value 1.000000e+00 will be displayed. 

 

Resetting the TSP-Link network 
After all the node numbers are set, you must initialize the system by performing a TSP-Link® network 
reset. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-47 

 

If you change the system configuration after initialization, you must reinitialize the system by 
performing a TSP-Link network reset. Changes that require that you reinitialize the TSP-Link network 
include turning off power or rebooting any instrument in the system, or rearranging or disconnecting 
the TSP-Link cable connections between instruments. 

 

Front panel operation 

To reset the TSP-Link® network from the front panel: 
1. Power on all instruments connected to the TSP-Link network. 
2. Press the MENU key, select TSPLINK, and then press the ENTER key. 
3. Turn the navigation wheel  to select RESET, and then press the ENTER key. 

 

Remote programming 

The commands associated with the TSP-Link® system reset are listed in the following table. 

TSP-Link reset commands 

Command Description 

tsplink.reset() Initializes the TSP-Link network 
tsplink.state Reads the state of the TSP-Link network: 

• “online” if the most recent TSP-Link reset was 
successful 

• “offline” if the reset operation failed 
 

An attempted TSP-Link reset operation will fail if any of the following conditions are true: 

• Two or more instruments in the system have the same node number 
• There are no other instruments connected to the instrument performing the reset (only if the 

expected number of nodes was not provided in the reset call) 
• One or more of the instruments in the system is turned off 
• If the actual number of nodes is less than the expected number 

 

The programming example below illustrates a TSP-Link reset operation and displays its state: 
tsplink.reset() 
print(tsplink.state) 

If the reset operation is successful, online is output to indicate that communications with all nodes 
have been established. 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-48 707B-901-01 Rev. B / January 2015 

 

Using TSP to run test scripts simultaneously 
You can use TSP to run test scripts simultaneously on multiple nodes on the TSP-Link network. 
Running test scripts simultaneously improves functional testing, provides higher throughput, and 
expands system flexibility. 

You can also use TSP to manage the resources that are allocated to the test scripts that are running 
simultaneously, and to use the data queue to facilitate real-time communication between nodes. 

There are two methods you can use to run test scripts in parallel: 

• Create multiple TSP-Link networks 
• Use a single TSP-Link network with groups 

The following table describes the functions of a single TSP-Link network. Each group in this example 
runs multiple test scripts at the same time or in parallel. 

 

TSP-Link network group functions 

Group number Group members Current function 

0 Master node • Initiates and runs a test script on Node 2 
• Initiates and runs a test script on Node 5 
• Initiates and runs a test script on Node 6 

1 Group leader  
Node 2 

• Runs the test script initiated by the 
master node 

• Initiates remote operations on Node 3 

Node 3 • Performs remote operations initiated by 
Node 2 

2 Group leader 
Node 5 

• Runs the test script initiated by the 
master node 

• Initiates remote operations on Node 4 

Node 4 • Performs remote operations initiated by 
Node 5 

3 Group leader 
Node 6 

• Runs the test script initiated by the 
master node 

TSP-Link has three synchronization lines that function similarly to the digital I/O synchronization lines. 
See Digital I/O (on page 5-8) and Hardware trigger modes (on page 3-13) for more detailed 
information. 

 

Using groups to manage nodes on TSP-Link network 
The primary purpose of groups is to allow each group to run a different test script simultaneously. 

A group can consist of one or more nodes. You must assign group numbers to each node using 
remote commands. If you do not assign a node to a group, it defaults to group 0, which will always be 
grouped with the master node (regardless of the group to which the master node is assigned). 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-49 

 

Master node overview 

You can assign the master node to any group. You can also include other nodes in the group that 
includes the master. Note that any nodes that are set to group 0 are automatically included in the 
group that contains the master node, regardless of the group that is assigned to the master node. 

The master node is always the node that coordinates activity on the TSP-Link network. 

The master node: 

• Is the only node that can use the execute() command on a remote node 

• Cannot initiate remote operations on any node in a remote group if any node in that remote group 
is performing an overlapped operation (a command that continues to operate after the command 
that initiated it has finished running) 

• Can execute the waitcomplete() command to wait for the group to which the master node 
belongs; to wait for another group; or to wait for all nodes on the TSP-Link network to complete 
overlapped operations (overlapped commands allow the execution of subsequent commands 
while device operations of the overlapped command are still in progress) 

 

Group leader overview 

Each group has a dynamic group leader. The last node in a group running any operation initiated by 
the master node is the group leader. 

The following list describes the functionality of the group leader: 

• Runs operations initiated by the master node 
• Initiates remote operations on any node with the same group number 
• Cannot initiate remote operations on any node with a different group number 
• Can send the waitcomplete command without a parameter to wait for all nodes assigned to the 

same group number 
 

Assigning groups 

Group numbers can range from zero (0) to 64. The default group number is 0. You can change the 
group number at any time. You can also add or remove a node to or from a group at any time. 

Each time the power for a node is turned off, the group number for that node changes to 0. 

The following example code dynamically assigns a node to a group: 
-- Assign node 3 to group 1. 
node[3].tsplink.group = 1 

 

Running simultaneous test scripts 
You can send the execute() command from the master node to initiate a test script and Lua code 
on a remote node. The execute() command places the remote node in the overlapped operation 
state. As a test script runs on the remote node, the master node continues to process other 
commands simultaneously. 

Use the following code to send the execute() command for a remote node. The N parameter 
represents the node number that runs the test script (replace N with the node number). 

To set the global variable "setpoint" on node N to 2.5: 
node[N].execute("setpoint = 2.5") 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-50 707B-901-01 Rev. B / January 2015 

 

The following code demonstrates how to run a test script that is defined on the local node. For this 
example, scriptVar is defined on the local node, which is the node that initiates the code to run on 
the remote node. The local node must be the master node. 
To run scriptVar on node N: 
node[N].execute(scriptVar.source) 

 

The programming example below demonstrates how to run a test script that is defined on a remote 
node. For this example, scriptVar is defined on the remote node. 

To run a script defined on the remote node: 
node[N].execute("scriptVar()") 

It is recommended that you copy large scripts to a remote node to improve system performance. See 
Copying test scripts across the TSP-Link network (on page 6-51) for more information.  

 

Coordinating overlapped operations in remote groups 

All overlapped operations on all nodes in a group must have completed before the master node can 
send a command to the group. If you send a command to a node in a remote group when an 
overlapped operation is running on any node in that group, errors will occur.  

You can execute the waitcomplete() command on the master node or group leader to wait for 
overlapped operations. The action of waitcomplete() depends on the parameters specified.  

If you want to wait for completion of overlapped operations for: 

• All nodes in the local group: Use waitcomplete() without a parameter from the master node 
or group leader. 

• A specific group: Use waitcomplete(N) with a group number as the parameter from the 
master node. This option is not available for group leaders. 

• All nodes in the system: Use waitcomplete(0) from the master node. This option is not 
available for group leaders. 

 

For additional information, refer to waitcomplete() (on page 7-242). 

The following code shows two examples of using the waitcomplete() command from the master 
node: 
-- Wait for each node in group N to complete all overlapped operations. 
waitcomplete(N) 
-- Wait for all groups on the TSP-Link network to complete overlapped operations. 
waitcomplete(0) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-51 

 

A group leader can issue the waitcomplete() command to wait for the local group to complete all 
overlapped operations. 

The following code is an example of how to use the waitcomplete() command from a group 
leader: 
-- Wait for all nodes in the local group to complete all overlapped operations. 
waitcomplete() 

Presently, the Models 707B and 708B have no overlapped commands implemented. However, other 
TSP-enabled products, such as the Series 2600A System SourceMeter® Instruments, have  
overlapped commands. Therefore, when the Model 707B or 708B is a TSP master to a subordinate 
device with overlapped commands, use this function to wait until all overlapped operations are 
completed. 

 

Using the data queue for real-time communication 
Nodes that are running test scripts at the same time can store data in the data queue for real-time 
communication. Each instrument has an internal data queue that uses the first-in, first-out (FIFO) 
structure to store data. You can use the data queue to post numeric values, strings, and tables.  

Use the data queue commands to: 

• Share data between test scripts running in parallel 
• Access data from a remote group or a local node on a TSP-Link® network at any time 

You cannot access the reading buffers or global variables from any node in a remote group while a 
node in that group is performing an overlapped operation. However, you can use the data queue to 
retrieve data from any node in a group that is performing an overlapped operation. In addition, the 
master node and the group leaders can use the data queue as a way to coordinate activities. 

Tables in the data queue consume one entry. When a node stores a table in the data queue, a copy 
of the data in the table is made. When the data is retrieved from the data queue, a new table is 
created on the node that is retrieving the data. The new table contains a completely separate copy of 
the data in the original table, with no references to the original table or any subtables. 

You can access data from the data queue even if a remote group or a node has overlapped 
operations in process. See the dataqueue commands in the TSP command reference (on page 7-1) 
for more information. 

 

Copying test scripts across the TSP-Link network 
To run a large script on a remote node, copy the test script to the remote node to increase the speed 
of test script initiation. 

The code in the example below copies a test script across the TSP-Link® network, creating a copy of 
the script on the remote node with the same name. 

 

-- Add the source code from the script 
-- testScript to the data queue. 
node[2].dataqueue.add(testScript.source) 
-- Create a new script on the remote node 
-- using the source code from testScript. 
node[2].execute(testScript.name .. 

"= script.new(dataqueue.next(), [[" .. testScript.name .. "]])") 
 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-52 707B-901-01 Rev. B / January 2015 

 

Removing stale values from the reading buffer cache 
The node that acquires the data also stores the data for the reading buffer. To optimize data access, 
all nodes can cache data from the node that stores the reading buffer data. 

When you run Lua code remotely, it can cause reading buffer data that is held in the cache to 
become stale. If the values in the reading buffer change while the Lua code runs remotely, another 
node can hold stale values. Use the clearcache() command to clear the cache. 

 

The following example code demonstrates how stale values occur and how to use the 
clearcache() command to clear the cache on node 2, which is part of group 7. 

 
 

TSP-Net 

Overview 
TSP-Net allows the Model 707B or 708B to control Ethernet-enabled devices directly through its LAN 
port. This enables the Model 707B or 708B to communicate directly with a device that is not TSP®-
enabled without the use of a controlling computer. 

 

TSP-Net Capabilities 
For both Test Script Processor (TSP®) and non-TSP devices, the TSP-Net® library permits the Model 
707B or 708B to control a remote device through the LAN port. Using TSP-Net methods, you can 
transfer string data to and from a remote device, transfer and format data into Lua variables, and 
clear input buffers. TSP-Net is only accessible using Instrument Control Library (ICL) commands from 
a remote command interface and is not available from the front panel.  

You can use TSP-Net to communicate with any Ethernet-enabled device. However, specific TSP-Net 
commands exist for TSP-enabled devices to allow for support of features unique to TSP. These 
features include script downloads, reading buffer access, wait completion, and handling of TSP 
prompts.  

Using TSP-Net with TSP-enabled instruments, a Model 707B or 708B can download a script to 
another TSP-enabled device and have both devices run scripts independently. The Model 707B or 
708B can read the data from the remote device and either manipulate the data or send the data to a 
different remote device on the LAN. You can simultaneously connect to a maximum of 32 devices 
using standard TCP/IP networking techniques through the LAN port of the Model 707B or 708B. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-53 

 

Using TSP-Net with any Ethernet-enabled device 

Refer to TSP commands for more details about the commands presented in this section. 

To communicate to a remote ethernet-enabled device from the Model 707B or 708B, perform the 
following steps: 
1. Connect to the remote device through the LAN port. If you are connecting: 

 Directly from the Model 707B or 708B to an ethernet-enabled device: Use an ethernet 
crossover cable. 

 The Model 707B or 708B to any other device on the LAN: Use a straight-through ethernet 
cable and a hub. 

2. Establish a new connection to a remote device at a specific IP address using 
tspnet.connect(). 

3. If the device is not TSP-enabled, you must also provide the port number. If not, the Model 707B 
or 708B assumes the remote device is TSP-enabled and enables TSP prompts and error 
handling. 
If the Model 707B or 708B is not able to make a connection to the remote device, it generates a 
timeout error. Use tspnet.timeout to set the timeout value. The default timeout value is 20 
seconds. 

 

Set tspnet.tsp.abortonconnect to 1 to abort any script currently running on a remote TSP 
device.  

 

4. Use tspnet.write() or tspnet.execute() to send strings to a remote device. 
tspnet.write() sends strings to the device exactly as indicated, and you must supply any 
needed termination characters or other lines. Use tspnet.termination() to specify the 
termination character. If you use tspnet.execute() (on page 7-231) instead, the Model 707B 
or 708B appends termination characters to all strings sent to the command. 

5. Retrieve responses from the remote device using tspnet.read(). The Model 707B or 708B 
suspends operation until data is available or a timeout error is generated. You can check if data is 
available from the remote device using tspnet.readavailable().  

Disconnect from the remote device using tspnet.disconnect(). Terminate all remote 
connections using tspnet.reset(). 

 

Example script 
The following example demonstrates how to connect to a remote device that is not Test Script 
Processor (TSP®) enabled, and send and receive data from this device: 
-- Disconnect all existing TSP-Net connections. 
tspnet.reset() 
-- Set tspnet timeout to 5 seconds. 
tspnet.timeout = 5 
-- Establish connection to another device with 
-- IP address 192.168.1.51 at port 1394. 
id_instr = tspnet.connect("192.168.1.51",1394, "*rst\r\n") 

 



Section 6: Instrument programming Models 707B and 708B Switching Matrix Reference Manual 
 

6-54 707B-901-01 Rev. B / January 2015 

 

-- Print the device ID from connect string. 
print("ID is: ", id_instr) 
-- Set termination character to CRLF. You must do this  
-- on a per connection basis after connection has been made. 
tspnet.termination(id_instr, tspnet.TERM_CRLF) 
-- Send the command string to the connected device 
tspnet.write(id_instr, "*idn?" .. "\r\n") 
-- Read the data available, then prints it. 
print("instrument write/read returns:: , tspnet.read(id_instr)) 
-- Disconnect all existing TSP-Net sessions. 
tspnet.reset() 

 

TSP-Net compared to TSP-Link to communicate with TSP-enabled 
devices 

The TSP-Link® network interface is the preferred communication method for most applications where 
communication occurs between the Model 707B or 708B and another TSP-enabled instrument. 

One of the advantages of using the TSP-Link network interface is that TSP-Link connections have 
three synchronization lines that are available to each device on the TSP-Link network. You can use 
any one of the synchronization lines to perform hardware triggering between devices on the TSP-Link 
network. Refer to Hardware trigger modes (on page 3-13) for details. 

However, if the distance between the Model 707B or 708B and the TSP-enabled device is longer than 
15 feet, use TSP-Net commands. 

 

TSP-Net instrument commands: General device control 
The following instrument commands provide general device control: 

tspnet.clear() (on page 7-228) 
tspnet.connect() (on page 7-229) 
tspnet.disconnect() (on page 7-230) 
tspnet.execute() (on page 7-231) 
tspnet.idn() (on page 7-232) 
tspnet.read() (on page 7-232) 
tspnet.readavailable() (on page 7-233) 
tspnet.reset() (on page 7-234) 
tspnet.termination() (on page 7-234) 
tspnet.timeout (on page 7-235) 
tspnet.write() (on page 7-239) 

 

TSP-Net instrument commands: TSP-enabled device control 
The following instrument commands provide TSP-enabled device control: 

tspnet.tsp.abort() (on page 7-236) 
tspnet.tsp.abortonconnect (on page 7-236) 
tspnet.tsp.rbtablecopy() (on page 7-237) 
tspnet.tsp.runscript() (on page 7-238) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 6: Instrument programming 
 

707B-901-01 Rev. B / January 2015 6-55 

 

Example: Using tspnet commands 
function telnetConnect(ipAddress, userName, password) 
   -- Connect through Telnet to a computer. 
   id = tspnet.connect(ipAddress, 23, "") 
   -- Read the title and login prompt from the computer. 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%n"))) 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%s"))) 
   -- Send the login name. 
   tspnet.write(id, userName .. "\r\n") 
   -- Read the login echo and password prompt from the computer. 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%s"))) 
   -- Send the password information. 
   tspnet.write(id, password .. "\r\n") 
   -- Read the telnet banner from the computer. 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%n"))) 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%n"))) 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%n"))) 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%n"))) 
end 
 
function test_tspnet() 
   tspnet.reset() 
   -- Connect to a computer using Telnet. 
   telnetConnect("192.0.2.1", "my_username", "my_password") 
   -- Read the prompt back from the computer. 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%n"))) 
   -- Change directory and read the prompt back from the computer. 
   tspnet.write(id, "cd c:\\\r\n") 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%s"))) 
   -- Make a directory and read the prompt back from the computer. 
   tspnet.write(id, "mkdir TEST_TSP\r\n") 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%s"))) 
   -- Change to the newly created directory. 
   tspnet.write(id, "cd c:\\TEST_TSP\r\n") 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%s"))) 
   -- if you have data print it to the file. 
   -- 11.2 is an example of data collected. 
   cmd = "echo " .. string.format("%g", 11.2) .. " >> datafile.dat\r\n" 
   tspnet.write(id, cmd) 
   print(string.format("from computer--> (%s)", tspnet.read(id, "%s"))) 
   tspnet.disconnect(id) 
end  
test_tspnet() 

 

 





 

 

In this section: 

Command programming notes ................................................. 7-1 
Using the TSP command reference ......................................... 7-4 
Instrument Control Library (ICL) command reference .............. 7-8 

 
 

Command programming notes 

Placeholder text 
This manual uses italicized text to represent the parts of remote commands that must be replaced by 
user specified values. The following examples show typical uses of italicized text:  

Example 1: 
gpib.address = address 

Where: 

address is an integer (0 to 30) that you specify. For example, to set this attribute to 15 you would 
send: 

gpib.address = 15 

Example 2: 
digio.trigger[N].assert() 

Where: 

N is an integer (1 to 14) that you specify. For example, to assert trigger line 7 you would send: 

digio.trigger[7].assert() 

To assert a trigger line with a variable as the integer, you would send: 

triggerline = 7 

digio.trigger[triggerline].assert() 

Example 3: 

The attribute returns a string containing information about a card in a specified slot is shown as: 

slot[X].idn 

For example, to get information about the card installed in slot 1, you would send: 

print(slot[1].idn) 
 

Section 7 

TSP command reference 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-2 707B-901-01 Rev. B / January 2015 

 

Syntax rules 
The following table lists syntax requirements to build well-formed instrument control commands. 

 

Syntax rules for instrument commands 

Syntax rule Details Examples 

Case sensitivity: 
Instrument 
commands are case 
sensitive.  
 
Match the case 
shown in the 
command reference 
descriptions. 
 

Function and attribute 
names should be in 
lowercase characters. 

An example of the scriptVar.save() function (where 
test8 is the name of the script): 
test8.save() 

Parameters can use a 
combination of 
lowercase and 
uppercase characters. 
 
Attribute constants use 
uppercase characters 

In the command below, which sets the format of data 
transmitted from the instrument to double-precision floating 
point, format.REAL64 is the attribute constant and 
format.data is the attribute command: 
format.data = format.REAL64 

White space: Not 
required in a function. 

Functions can be sent 
with or without white 
spaces. 

The following functions, which set digital I/O line 3 low, are 
equivalent: 
digio.writebit(3,0) 
digio.writebit (3, 0) 

Function 
parameters: All 
functions are required 
to have a set of 
parentheses () 
immediately following 
the function. 

You can specify the 
function parameters by 
placing them between 
the parentheses. Note 
that the parentheses 
are required even when 
there are no parameters 
specified. 

The following function specifies all overlapped commands in 
the nodes in group G that must complete before commands 
from other groups can execute: 
waitcomplete(G) 
 
The command below reads the value of the local time zone 
(no parameters are needed): 
timezone = gettimezone() 

Multiple parameters: 
Must be separated by 
commas (,). 

Some commands 
require multiple 
parameters, which must 
be separated by 
commas (,). 

This command sets the beeper to emit a double-beep at 
2400 Hz, with a beep sequence of 0.5 seconds on, 0.25 
seconds off, and then 0.5 seconds on: 
beeper.beep(0.5, 2400) 
delay(0.250) 
beeper.beep(0.5, 2400) 

Parameter range: 
Range values must 
be separated with a 
colon (:). 

Place a colon (:) 
between two values to 
specify a range in a 
parameter. 

The command below replaces the active scan list with an 
empty scan list, and then adds channels in row 1, columns 1 
through 10, on slot 1: 
scan.create("1A01:1A10") 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-3 

 

Logical instruments 
You would normally refer to all instrumentation in one enclosure or node as a single instrument. In the 
context of Test Script Processor (TSP®) scripting engine and instrument commands, it is useful to 
think of each individual subdivision in an enclosure, such as a card slot or the channels, as a 
stand-alone instrument. To avoid confusion, all subdivisions of the instrumentation in an enclosure 
are referred to as "logical instruments." 

Each logical instrument is given a unique identifier in a system. These identifiers are used as part of 
all commands that control a given logical instrument. 

The logical instruments are: 

• beeper • lan 
• bit • memory 
• channel • scan 
• dataqueue • slot 
• digio • status 
• display • timer 
• eventlog • trigger 
• errorqueue • tsplink 
• format • tspnet 
• gpib • userstring 

Do not create variable names that are the same as names of logical instruments. Doing so will result 
in the loss of use of the logical instrument and its associated commands. For example, if you send 
the command digio = 5, you cannot access the digio.* commands until you turn off the power to 
the instrument, and then turn it on again. 

 

Time and date values 
Time and date values are represented as the number of seconds since some base. Representing 
time as a number of seconds is referred to as “standard time format.” There are three time bases: 

• UTC 12:00 am Jan 1, 1970. Some examples of UTC time are reading buffer base timestamps, 
adjustment dates, and the value returned by os.time(). 

• Instrument on. References time to when the instrument was turned on. The value returned by 
os.clock() is referenced to the turn-on time. 

• Event. Time referenced to an event, such as the first reading stored in a reading buffer. 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-4 707B-901-01 Rev. B / January 2015 

 

Using the TSP command reference 
The TSP command reference contains detailed descriptions of each of the TSP commands that you 
can use to control your instrument. Each command description is broken into subsections. The figure 
below shows an example of a command description. 

Figure 91: Example instrument command description 

 

The subsections contain information about the command. The subsections are: 

• Command name and summary table 
• Usage 
• Details 
• Example 
• Also see 

The content of each of these subsections is described in the following topics. 
 

Command name and standard parameters summary 
Each instrument command description starts with the command name, followed by a table with 
relevant information for each command. Definitions for the numbered items in the figure below are 
listed following the figure. 

1. Instrument command name. Signals the beginning of the command description and is followed 
by a brief description of what the command does. 

2. Type of command. Options are: 
 Function. Function-based commands control actions or activities, but are not always directly 

related to instrument operation. Function names are always followed by a set of parentheses, 
for example, digio.writeport(15). If the function does not need a parameter, the 
parentheses set remains empty, for example, exit(). 

 Attribute (R), (RW), or (W). Attribute-based commands set or read the characteristics of an 
instrument feature or operation by defining a value. For example, a characteristic of a 
TSP-enabled instrument is the model number (localnode.model); another characteristic is 
the number of errors in the error queue (errorqueue.count). For many attributes, the 
defined value is a number or predefined constant. Attributes can be read-only (R), read-write 
(RW), or write-only (W), and can be used as a parameter of a function or assigned to another 
variable. 

 Constant. A constant command represents a fixed value when used in a script. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-5 

 

3. TSP-Link accessible. Yes or No; indicates whether or not the command can accessed through a 
TSP-Link network. 

4. Affected by. Commands or actions that have a direct effect on the instrument command. 
 LAN restore defaults  
 Reset: This command has varied effects depending on how it is used. Reset actions include: 

 - Channel reset - Status reset 

 - Digital I/O trigger reset - Instrument reset 

 - Instrument reset - Trigger blender reset 

 - LAN reset - Trigger timer reset 

 - LAN restore defaults - TSP-Link trigger reset 

 - Local node reset  

5. Where saved. Indicates where the command settings reside once they are used on an 
instrument. Options include: 
 Create configuration script: This command is saved as part of the configuration script if you 

save the current configuration into a script with the createconfigscript() command or 
the MENU - SCRIPT - CREATE-CONFIG option from the front panel. 

 Not saved: Command is not saved anywhere and must be typed each time you use it. 
 Nonvolatile memory: Storage area in the instrument where information is saved when the 

instrument is turned off.  
 Saved setup 

6. Default value: Lists the default value or constant for the command. The parameter values are 
defined in the Usage or Details sections of the command description. 

 

Command usage 
The Usage section of the remote command listing shows how to properly structure the command. 
Each line in the Usage section is a separate variation of the command usage. All possible command 
usage options are shown. 

Figure 92: TSP usage description 

 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-6 707B-901-01 Rev. B / January 2015 

 

1 Structure of command usage: Shows how the parts of the command should be organized. If a 
parameter is shown to the left of the command, it is the return when you print the command. 
Information to the right are the parameters or other items you need to enter when setting the 
command. 

2 User-supplied parameters: Indicated by italics. For example, for the function 
beeper.beep(duration, frequency), replace duration with the number of seconds and 
frequency with the frequency of the tone. beeper.beep(2, 2400) generates a two-second, 
2400 Hz tone. 
 
Some commands have optional parameters. If there are optional parameters, they must be 
entered in the order presented in the Usage section. You cannot leave out any parameters that 
precede the optional parameter. Optional parameters are shown as separate lines in usage, 
presented in the required order with each valid permutation of the optional parameters. 
For example: 
printbuffer(startIndex, endIndex, buffer1) 
printbuffer(startIndex, endIndex, buffer1, buffer2) 

3 Parameter value options: Descriptions of the options that are available for the user-defined 
parameter. 

 

Command details 
This section lists additional information you need to know to successfully use the remote commands. 
 

Figure 93: TSP Details description 

 
 

Example section 
The Example section of the remote command description shows examples of how you can use the 
command. 

Figure 94: TSP example code 

 
 

1 Actual example code that you can copy from this table and paste into your own programming 
application. 

2 Description of the code and what it does. This may also contain example output of the code. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-7 

 

Related commands and information 
The Also See section of the remote command description lists additional commands or sections that 
are related to the command. 

Figure 95: TSP Also See description 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-8 707B-901-01 Rev. B / January 2015 

 

 
 

Instrument Control Library (ICL) command reference 

beeper.beep() 
This function generates an audible tone. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    
 

Usage 

beeper.beep(duration, frequency) 
 

duration The amount of time to play the tone (0.001 to 100 s) 

frequency The frequency of the tone in Hertz (Hz) 
 

Details 

You can use the beeper of the Models 707B and 708B to provide an audible signal at a specified 
frequency and time duration. For example, you can use the beeper to signal the end of a lengthy 
sweep. 
The beeper will not sound if it is disabled. It can be disabled or enabled with the beeper enable 
command, or through the front panel. 

 

Example 
 

beeper.enable = beeper.ON 
beeper.beep(2, 2400) 

Enables the beeper and generates a 
two-second, 2400 Hz tone. 

 

Also see 

beeper.enable (on page 7-8) 
 

beeper.enable 
This command allows you to turn the beeper on or off. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Recall setup 
Instrument reset 

Saved setup 
Create configuration script 

1 (beeper.ON) 

Usage 

state = beeper.enable 
beeper.enable = state 
 

state Disable the beeper: beeper.OFF or 0 
Enable the beeper: beeper.ON or 1 

Details 

This command enables or disables the beeper. When enabled, a beep signals that a front-panel key 
has been pressed. Disabling the beeper also disables front-panel key clicks. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-9 

 

Example 
 

beeper.enable = beeper.ON 
beeper.beep(2, 2400) 

Enables the beeper and generates a 
two-second, 2400 Hz tone. 

Also see 

beeper.beep() (on page 7-8) 
 
 

bit.bitand() 
This function performs a bitwise logical AND operation on two numbers. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.bitand(value1, value2) 
 

result Result of the logical AND operation 
value1 Operand for the logical AND operation 
value2 Operand for the logical AND operation 

 

Details 

Any fractional parts of value1 and value2 are truncated to form integers. The returned result is 
also an integer. 

 

Example 
 

testResult = bit.bitand(10, 9) 
 
print(testResult) 

Performs a logical AND operation on decimal 10 
(binary 1010) with decimal 9 (binary 1001), which 
returns a value of decimal 8 (binary 1000). 
Output: 
8.0000000e+00 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.bitor() (on page 7-9) 
bit.bitxor() (on page 7-10) 

 

bit.bitor() 
This function performs a bitwise logical OR operation on two numbers. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-10 707B-901-01 Rev. B / January 2015 

 

Usage 

result = bit.bitor(value1, value2) 
 

result Result of the logical OR operation 
value1 Operand for the logical OR operation 
value2 Operand for the logical OR operation 

 

Details 

Any fractional parts of value1 and value2 are truncated to make them integers. The returned 
result is also an integer. 

 

Example 
 

testResult = bit.bitor(10, 9) 
 
print(testResult) 

Performs a bitwise logical OR operation on decimal 
10 (binary 1010) with decimal 9 (binary 1001), which 
returns a value of decimal 11 (binary 1011). 
Output: 
1.1000000e+01 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.bitand() (on page 7-9) 
bit.bitxor() (on page 7-10) 

 

bit.bitxor() 
This function performs a bitwise logical XOR (exclusive OR) operation on two numbers. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.bitxor(value1, value2) 
 

result Result of the logical XOR operation 
value1 Operand for the logical XOR operation 
value2 Operand for the logical XOR operation 

 

Details 

Any fractional parts of value1 and value2 are truncated to make them integers. The returned 
result is also an integer. 

 

Example 
 

testResult = bit.bitxor(10, 9) 
 
print(testResult) 

Performs a logical XOR operation on decimal 10 
(binary 1010) with decimal 9 (binary 1001), which 
returns a value of decimal 3 (binary 0011). 
Output: 
3.0000000e+00 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-11 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.bitand() (on page 7-9) 
bit.bitor() (on page 7-9) 

 

bit.clear() 
This function clears a bit at a specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.clear(value, index) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position within value to clear (1 to 32) 

 

Details 

Any fractional part of value is truncated to make it an integer. The returned result is also an 
integer. 
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 

 

Example 
 

testResult = bit.clear(15, 2) 
 
print(testResult) 

The binary equivalent of decimal 15 is 1111. If you 
clear the bit at index position 2, the returned 
decimal value is 13 (binary 1101). 
Output: 
1.3000000e+01 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.get() (on page 7-11) 
bit.set() (on page 7-13) 
bit.test() (on page 7-14) 
bit.toggle() (on page 7-15) 

 

bit.get() 
This function retrieves the weighted value of a bit at a specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-12 707B-901-01 Rev. B / January 2015 

 

Usage 

result = bit.get(value, index) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position within value to get (1 to 32) 

 

Details 

This function returns the value of the bit in value at index. This is the same as returning value with 
all other bits set to zero (0). 
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 
If the indexed bit for the number is set to zero (0), the result will be zero (0). 

 

Example 
 

testResult = bit.get(10, 4) 
 
print(testResult) 

The binary equivalent of decimal 10 is 1010. If you 
get  the bit at index position 4, the returned decimal 
value is 8. 
Output: 
8.0000000e+00 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.clear() (on page 7-11) 
bit.set() (on page 7-13) 
bit.test() (on page 7-14) 
bit.toggle() (on page 7-15) 

 

bit.getfield() 
This function returns a field of bits from the value starting at the specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.getfield(value, index, width) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position within value to get (1 to 32) 
width The number of bits to include in the field (1 to 32) 

 

Details 

A field of bits is a contiguous group of bits. This function retrieves a field of bits from value starting at 
index. 
The index position is the least significant bit of the retrieved field. The number of bits to return is 
specified by width. 
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-13 

 

Example 
 

myResult = bit.getfield(13, 2, 3) 
 
 
 
print(myResult) 

The binary equivalent of decimal 13 is 1101.  
The field at index position 2 and width 3 
consists of the binary bits 110. The returned value 
is decimal 6 (binary 110). 
Output: 
6.0000000e+00 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.get() (on page 7-11) 
bit.set() (on page 7-13) 
bit.setfield() (on page 7-14) 

 

bit.set() 
This function sets a bit at the specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.set(value, index) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position within value to set (1 to 32) 

 

Details 

This function returns result, which is value with the indexed bit set. The index must be between 
1 and 32. 
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 
Any fractional part of value is truncated to make it an integer. 

 

Example 
 

testResult = bit.set(8, 3) 
 
print(testResult) 

The binary equivalent of decimal 8 is 1000. If the bit at 
index position 3 is set to 1, the returned value is 
decimal 12 (binary 1100). 
Output: 
1.2000000e+01 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.clear() (on page 7-11) 
bit.get() (on page 7-11) 
bit.getfield() (on page 7-12) 
bit.setfield() (on page 7-14) 
bit.test() (on page 7-14) 
bit.toggle() (on page 7-15) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-14 707B-901-01 Rev. B / January 2015 

 

bit.setfield() 
This function overwrites a bit field at a specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.setfield(value, index, width, fieldValue) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position in value to set (1 to 32) 
width The number of bits to include in the field (1 to 32) 
fieldValue Value to write to the field 

 

Details 

This function returns result, which is value with a field of bits overwritten, starting at index. The 
index specifies the position of the least significant bit of value. The width bits starting at index 
are set to fieldValue. 
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 
Before setting the field of bits, any fractional parts of value and fieldValue are truncated to form 
integers. 
If fieldValue is wider than width, the most significant bits of the fieldValue that exceed the 
width are truncated. For example, if width is 4 bits and the binary value for fieldValue is 11110 (5 
bits), the most significant bit of fieldValue is truncated and a binary value of 1110 is used. 

 

Example 
 

testResult = bit.setfield(15, 2, 3, 5) 
 
 
print(testResult) 

The binary equivalent of decimal 15 is 1111. After 
overwriting it with a decimal 5 (binary 101) at index 
position 2, the returned value is decimal 11 (binary 
1011). 
Output: 
1.1000000e+01 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.get() (on page 7-11) 
bit.set() (on page 7-13) 
bit.getfield() (on page 7-12) 

 

bit.test() 
This function returns the Boolean value (true or false) of a bit at the specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-15 

 

Usage 

result = bit.test(value, index) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position within value to test (1 to 32) 

 

Details 

This function returns result, which is the result of the tested bit.  
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 
If the indexed bit for value is 0, result is false. If the bit of value at index is 1, the returned 
value is true. 
If index is bigger than the number of bits in value, the result is false. 

 

Example 
 

testResult = bit.test(10, 4) 
 
print(testResult) 

The binary equivalent of decimal 10 is 1010. 
Testing the bit at index position 4 returns a 
Boolean value of true. 
Output: 
true 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.clear() (on page 7-11) 
bit.get() (on page 7-11) 
bit.set() (on page 7-13) 
bit.toggle() (on page 7-15) 

 

bit.toggle() 
This function toggles the value of a bit at a specified index position. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    
 

Usage 

result = bit.toggle(value, index) 
 

result Result of the bit manipulation 
value Specified number 
index One-based bit position within value to toggle (1 to 32) 

 

Details 

This function returns result, which is the result of toggling the bit index in value. 
Any fractional part of value is truncated to make it an integer. The returned value is also an integer. 
The least significant bit of value is at index position 1; the most significant bit is at index position 
32. 
The indexed bit for value is toggled from 0 to 1, or 1 to 0. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-16 707B-901-01 Rev. B / January 2015 

 

Example 
 

testResult = bit.toggle(10, 3) 
 
print(testResult) 

The binary equivalent of decimal 10 is 1010. 
Toggling the bit at index position 3 returns a 
decimal value of 14 (binary 1110). 
Output: 
1.4000000e+01 

 

Also see 

Bit manipulation and logic operations (on page 5-4) 
bit.clear() (on page 7-11) 
bit.get() (on page 7-11) 
bit.set() (on page 7-13) 
bit.test() (on page 7-14) 

 

channel.clearforbidden() 
This function clears the list of channels specified from being forbidden to close. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.clearforbidden(channelList) 
 

channelList String that specifies a list of channels, using channel list notation 

Details 

The channelList parameter indicates the channels that will no longer be forbidden to close, and 
may include: 

• allslots or slotX  (where X equals 1 to 6 for Model 707B, or 1 for Model 708B) 
• Channel ranges or individual channels 

This function allows all items contained in the channelList parameter to be closed. It removes the 
"forbidden to close" attribute that can be applied to a channel using channel.setforbidden(). 
Command processing stops as soon as an error is detected. If an error is found, the channels are not 
cleared from being forbidden to close. 

Example 
 

channel.reset("slot1") 
channel.setforbidden("1A01:1A05") 
 
channel.clearforbidden("1A02,1A03") 
print(channel.getforbidden("slot1")) 

Reset the channels on slot 1. 
Set channels 1A01, 1A02, 1A03, 1A04, and 
1A05 to be forbidden to close.  
Change 1A02 and 1A03 to be allowed to 
close. 
Retrieve the list of forbidden channels. 
Output: 
1A01,1A04,1A05 

Also see 

channel.getforbidden() (on page 7-27) 
channel.setforbidden() (on page 7-42) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-17 

 

channel.close() 
This function closes the channels and channel patterns that are specified by the channel list parameter without 
opening any channels. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.close(channelList) 
 

channelList A string that lists the channels and channel patterns to close 

Details 

Channels closed with this command are appended to the already closed channels (no previously 
closed channels are opened by this command). 
Actions associated with this function include: 

• Close the specified items in channelList 
• Incur the settling time and any user-specified delay 

An error is generated if: 
• The parameter string contains slotX, where X is 1 to 6, or allslots 
• A forbidden item is specified 
• Specified channel does not support being closed 

Once an error is detected, the command stops processing and no channels are closed.  

Example 
 

channel.open("allslots") 
channel.pattern.setimage("1B02,1B04,1B06", 

"Chans") 
channel.close("1A01:1A05, 1C03, Chans") 
print(channel.getclose("slot1")) 

Close a variety of channels, directly and with a 
channel pattern; note that the output sorts the 
channels 
Output: 
1A01;1A02;1A03;1A04;1A05;1B02;1B04;1

B06;1C03 

Also see 

channel.exclusiveclose() (on page 7-22) 
channel.exclusiveslotclose() (on page 7-23) 
channel.getclose() (on page 7-24) 
channel.open() (on page 7-33) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-18 707B-901-01 Rev. B / January 2015 

 

channel.connectrule 
This attribute controls the connection rule for closing and opening channels in the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 

Create configuration script 
Save setup 

channel.BREAK_BEFORE_MAKE 

Usage 

rule = channel.connectrule 
channel.connectrule = rule 
 

rule • channel.BREAK_BEFORE_MAKE or 1: Break-before-make (BBM) 
connections for relays in the instrument 

• channel.MAKE_BEFORE_BREAK or 2: Make-before-break (MBB) 
connections for relays in the instrument 

• channel.OFF or 0: Does not guarantee a connection rule. The instrument 
closes relays as efficiently as possible to improve speed performance without 
applying a rule 

Details 

The connection rule describes the order in which switch channels are opened and closed when using 
channel.exclusiveclose(), channel.exclusiveslotclose(), and scanning commands 
like scan.execute() and scan.background(). These commands may both open and close 
switch channels in a single command. The connection rule dictates the algorithm used by the 
instrument to order the opening and closing of switches. 
The connection rule affects the operating time of these commands. These commands do not allow 
the instrument to continue execution until the settle time of the relays has expired. 
When the connection rule is set to channel.BREAK_BEFORE_MAKE, the instrument ensures that all 
switch channels open before any switch channels close. When switch channels are both opened and 
closed, this command executes not less than the addition of both the open and close settle times of 
the indicated switch channels. 
When the connection rule is set to channel.MAKE_BEFORE_BREAK, the instrument ensures that all 
switch channels close before any switch channels open. This behavior should be applied with caution 
because it will connect two test devices together for the duration of the switch close settle time. When 
switch channels are both opened and closed, the command executes not less than the addition of 
both the open and close settle times of the indicated switch channels. 
With no connection rule (set to channel.OFF), the instrument attempts to simultaneously open and 
close switch channels in order to minimize the command execution time. This results in faster 
performance at the expense of guaranteed switch position. During the operation, multiple switch 
channels may simultaneously be in the close position. Make sure your device under test can 
withstand this possible condition. When switch channels are both opened and closed, the command 
executes not less than the greater of either the open or close settle times of the indicated switch 
channels. 

You cannot guarantee the sequence of open and closure operations when the channel connect rule 
set to OFF. It is highly recommended that you implement cold switching when the channel connect 
rule is set to OFF. 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-19 

 

In general, the settling time of single commands that open and close switch channels depends on 
several factors, such as card type and channel numbers. However, the opening and closing of two 
sequential channels including no others can be guaranteed as follows: 

• channel.BREAK_BEFORE_MAKE open settle time + close settle time 
• channel.MAKE_BEFORE_BREAK close settle time + open settle time 
• channel.OFF maximum of open settle time or close settle time 

This behavior is also affected by channel.connectsequential and any additional user delay 
times. 

Make-before-break (also known as hot switching) can dry-weld reed relays so that they will 
always be on. Hot switching is recommended only when external protection is provided. 

Example 
 

channel.connectrule = channel.BREAK_BEFORE_MAKE Sets the connect rule in the instrument to 
channel.BREAK_BEFORE_MAKE 

Also see 

channel.connectsequential (on page 7-19) 
channel.exclusiveclose() (on page 7-22) 
channel.exclusiveslotclose() (on page 7-23) 
scan.background() (on page 7-139) 
scan.execute() (on page 7-142) 

 

channel.connectsequential 
This attribute controls whether or not channels are closed sequentially. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 

Create configuration script channel.OFF 

 

Usage 

sequential = channel.connectsequential 
channel.connectsequential = sequential 
 

sequential • channel.OFF or 0: Disable sequential connections 
• channel.ON or 1: Enable sequential connections 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-20 707B-901-01 Rev. B / January 2015 

 

Details 

When channel.connectsequential is enabled, the list of channel actions is acted on 
sequentially. No two relays are opened or closed simultaneously. 

Using a sequential close allows you to determine the time for a close operation to happen. For 
example, if you close three channels and each takes 4 ms to closej (assuming no additional user 
delay times), with sequential on, it will take 12 ms. With sequential off, it may be 4, 8 or 12 ms, 
depending on whether or not the card can close multiple channels at once. 

The order in which channels are opened or closed is not guaranteed with sequential off. 

The sequential setting affects all channels in the instrument. 
 

Example 
 

channel.connectsequential = channel.ON Specifies that channels close sequentially. 
 

Also see 

channel.connectrule (on page 7-18) 
Switch operation (on page 2-80) 

 

channel.createspecifier() 
This function creates a string channel descriptor from a series of card-dependent integer arguments. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

specifier = channel.createspecifier(slot, row, column) 
 

specifier The formatted string for the channel 

slot The slot number to use (1 to 6) 

row The row number to use (see the matrix card documentation for limits); map row 
letters to numbers (A = 1, B = 2, and so on) 

column Specifies the column number to use 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-21 

 

Details 

The arguments are dependent upon the card type in the specified slot. This command can only create 
valid channel descriptors; if an illegal argument is sent for the type of card in the specified slot, an 
error is generated. 

Example 1 
 

cs = channel.createspecifier(1, 1, 1) 
print(cs) 

Creates a channel descriptor for 
row 1, column 1 on the card in slot 
1. 
Output: 
1A01 

Example 2 
 

count = 0 
for row = 1, 8 do 
   for col = 1, 12 do 
      ch = channel.createspecifier(1, row, col) 
      count = count + tonumber(channel.getcount(ch)) 
   end 
end 
print("Count is " .. count .. ".") 

Assuming an 8x12 matrix card 
in slot 1, this example 
calculates the sum of the 
counts on all channels. 
Output: 
Count is 1060656. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-22 707B-901-01 Rev. B / January 2015 

 

channel.exclusiveclose() 
This function closes the specified channels so that they are the only channels that are closed on the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.exclusiveclose(channelList) 
 

channelList A string listing the channels and channel patterns to exclusively close 

Details 

This command allows you to close specific channels and open any other channels on the instrument. 
When you send this command, any presently closed channel opens if it is not specified to be closed 
in the parameter. When you send this command: 

• Any presently closed channels that are not specified in channelList are opened. 
• The channels in channelList are closed. 
• Settling and user-specified delay times are applied as defined by the connection rules and delay 

settings. 
If the channelList parameter is an empty string or a string of spaces, all channels are opened. 
Therefore, sending channel.exclusiveclose("") is equivalent to 
channel.open(channel.getclose("allslots")). However, sending the equivalent 
commands when nothing is closed generates an error because nil (the response of 
channel.getclose("allslots")) is being sent to the open command. 
An error is generated if: 

• The parameter string contains slotX,  where X = 1 to 6 or allslots 
• A specified channel or channel pattern is invalid 
• Channel number does not exist for slot specified 
• Slot is empty 
• A forbidden item is specified 

Once an error is detected, the command stops processing. Channels open or close only if no errors 
are found. 

Example 
 

channel.exclusiveclose("") 
channel.close("1D01,1E12") 
print(channel.getclose("slot1")) 
 
channel.pattern.setimage("1B02,1B04,1B06", "myChans") 
channel.exclusiveclose("1A01:1A05, 1C03, myChans") 
print(channel.getclose("slot1")) 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-23 

 

Open all channels because the channelList parameter is empty. 
Close 1D01 and 1E12. 
Output: 
1D01;1E12 
 
Create the pattern myChans. 
Exclusively close the channels in myChans and additional specified channels. The originally closed channels 
(1D01 and 1E12) are now  open. 
Output: 
1A01;1A02;1A03;1A04;1A05;1B02;1B04;1B06;1C03 

Also see 

channel.close() (on page 7-17) 
channel.connectrule (on page 7-18) 
channel.connectsequential (on page 7-19) 
channel.exclusiveslotclose() (on page 7-23) 
channel.getclose() (on page 7-24) 
channel.open() (on page 7-33) 

 

channel.exclusiveslotclose() 
This function closes the specified channels and channel patterns on the associated slots and opens any channels 
that are not specified. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.exclusiveslotclose(channelList) 
 

channelList A string that lists the channels and channel patterns to exclusively close on the 
cards in associated slots 

 

Details 

This command allows you to bundle the closing of channels with the opening of channels. Any 
currently closed channels open if they are not specified to be closed on the slots related to the 
channels in channelList. Using this command guarantees that only the specified channels and 
channel patterns are closed on the slots associated with channels in the channelList. 
When this command is sent: 

• Closed channels  for the associated slots are opened if they are not specified in the channelList 
• Channels specified by the items in channelList are closed 

Any settling times and user-specified delay times are incurred before command processing is 
complete 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-24 707B-901-01 Rev. B / January 2015 

 

For example, if row 1, column 1 channels are closed on each of the six slots, specifying a 
channelList parameter of "2A02, 4A04" opens the row 1, column 1 channels (slots 2 and 4 only). 
Then, the row 1, column 2 channel on slot 2, and the row 1, column 4 channel on slot 4 close. The 
row 1, column 2 channels remain closed on slots 1, 3, 5, and 6. 
An error is generated if: 
• The parameter string contains slotX (where X = 1 to 6) or allslots 
• The parameter string is empty or parameter string with just spaces 
• A specified channel is invalid or does not exist for the slot 
• Channel pattern does not exist or the image of the pattern is an empty channel list 
• A forbidden item is specified 
Once an error is detected, the command stops processing. Channels open or close only if no errors 
are found and remain unchanged with any parsing or syntax error. 

 

Example 

channel.open("allslots") 
channel.close("1A01,2A01,3A01,4A01,5A01,6A01") 
channel.exclusiveslotclose("3A03") 
print(channel.getclose("allslots")) 

Open all channels on all slots. 
Close row A column 1 channels on all slots. 
Open row A column 1 on slot 3 and close 
row A column 3 on slot 3 without affecting 
any other slot with closed channels. 
Output: 
1A01;2A01;3A03;4A01;5A01;6A01 

Also see 

channel.close() (on page 7-17) 
channel.exclusiveclose() (on page 7-22) 
channel.getclose() (on page 7-24) 
channel.open() (on page 7-33) 

 

channel.getclose() 
This function queries for the closed channels indicated by the channel list parameter. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

closed = channel.getclose(channelList) 
closed A string listing the channels that are presently closed in the specified channel list 

parameter 
channelList A string representing the channels and channel patterns that will be queried 

Details 

If more than one channel is closed, they are semicolon-delimited in the string.  When the 
channelList contains a channel pattern, only the closed channels in that image are returned. 
An error message is generated if an empty parameter string is specified or if the specified channel list 
contains no valid channels that can be closed (for example, a channel list equaling "slotX" or 
"allslots"). 
If nothing is closed within the specified scope, a nil response is returned. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-25 

 

Example 1 
 

channelList = "1A01:1H12" 
channel.close("1A01") 
print(channel.getclose(channelList)) 
channel.close("1C03") 
print(channel.getclose(channelList)) 

For this example, assume there is a card or 
pseudocard in slot 1 with no previously closed 
channels. The output is: 
1A01 
1A01;1C03 

Example 2 
 

channel.close("1B03:1B05") 
print(channel.getclose("allslots")) 

For this example, assume there is a card or 
pseudocard in slot 1 with no previously closed 
channels. The output is: 
1B03;1B04;1B05 

Also see 

channel.close() (on page 7-17) 
channel.exclusiveclose() (on page 7-22) 
channel.getstate() (on page 7-32) 
channel.open() (on page 7-33) 
Data retrieval commands (on page 5-3) 

 

channel.getcount() 
This function returns a string with the close counts for the specified channels. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

counts = channel.getcount(channelList) 
 

counts A comma-delimited string listing the channel close counts 
channelList A string listing the items to query, which can include: 

• Channels 
• Channel patterns (channels will be listed in the order in which they are listed 

in the pattern) 
• slotX, where X equals 1 to 6 for the Model 707B or 1 for the Model 708B 
• allslots 

 

Details 

A close count is the number of times a relay has been closed. The count values are returned in the 
order in which the channels are specified. 
If channelList includes a pattern, you can use channel.pattern.getimage() with the pattern 
name to see the channel order and the channels to which the close counts pertain. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-26 707B-901-01 Rev. B / January 2015 

 

When the channelList parameter for this function is "slotX", the response first lists the channels 
starting from lowest to highest (from slot 1 to slot 6). Because each slot is processed completely 
before going to the next, all slot 1 channels are listed before slot 2 channels. 
The counts reported for the following cards indicate the number of closures since the last power cycle 
of the card: 

• 7072 
• 7072-HV 
• 7173-50 
• 7174A 

For all other cards, the number of closures is the closures that have occurred over the lifetime of the 
card. 
If an error is detected, a nil value is returned. No partial list of close counts is returned. 

Pseudocards do not support counts, so count values are generated numbers, not actual count 
values, if a pseudocard is used. 

 

Example 
 

channel.pattern.setimage("1A01,1B02,1C01","Path") 
PathList = 
   channel.pattern.getimage("Path") 
print(PathList) 
print(channel.getcount(PathList)) 
print(channel.getcount("Path")) 

Gets the close counts for channels in a 
channel pattern called "Path". 
Sample output: 
1A01,1B02,1C01 
11001,11014,11025 
11001,11014,11025 

 
 
 

Also see 

channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 
Data retrieval commands (on page 5-3) 

 

channel.getdelay() 
This function queries for the additional delay time for the specified channels. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes Instrument reset 

Channel reset 
Recall setup 

Create configuration script 
Save setup 

0 

 

Usage 

delayTimes = channel.getdelay(channelList) 
 

delayTimes A comma-delimited string consisting of the delay times (in seconds) for channels 
specified in channelList 

channelList A string listing the channels to query for their delay times 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-27 

 

Details 

The channelList parameter may contain slotX (where X equals 1 to 6 for Model 707B, or 1 for 
Model 708B)  or allslots. 
A command, after closing the state of channels, incurs the delay time indicated in the response for a 
channel before it completes. However, the internal settling time must elapse before the user delay is 
incurred. Therefore, the sequence is: 

1. Command is processed 
2. Channel closes 
3. Settling time is incurred 
4. User delay is incurred 
5. Command completes 

 

The delay times are comma-delimited in the same order that the items were specified in the 
channelList parameter. A value of zero (0) indicates that no additional delay time is incurred 
before a close command completes. 
An error message is generated for the following reasons: 

• The specified channels do not support a delay time 
• A channel pattern is specified 

Command processing stops as soon as an error is detected and a nil response is generated. 
 

Pseudocards do not support user delays, so this value is always zero (0) if a pseudocard is used. 
 

Example 
 

print(channel.getdelay("1A07,1B05,1C03")) 
 
 
 
 
 
channel.setdelay("slot1", 3.1) 
DelayTimes = channel.getdelay("1A07,1B05,1C03") 
print(DelayTimes) 

Get the existing delays for the listed 
channels. 
Output: 
0.0000000e+00,0.0000000e+00,0.000

0000e+00 
 
Set a delay on all channels in slot 1. 
Verify that the delay was set for the listed 
channels. 
Output: 
3.1000000e+00,3.1000000e+00,3.100

0000e+00 

Also see 

channel.setdelay() (on page 7-41) 
Data retrieval commands (on page 5-3) 

 

channel.getforbidden() 
This function returns a string listing the channels in the channel list that are forbidden to close. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 

Create configuration script 
Save setup 

Permitted to close 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-28 707B-901-01 Rev. B / January 2015 

 

Usage 

forbiddenList = channel.getforbidden(channelList) 
 

forbiddenList Comma-delimited string listing the channels in the channel list that are forbidden to 
close 

channelList A string listing the channels and channel patterns that are to be checked to see if 
they are forbidden to close 

 

Details 

The channelList parameter indicates which channels to check, and may include: 
• allslots or slotX (where X equals 1 to 6 for Model 707B, or 1 for Model 708B) 
• Channel ranges or individual channels 
• Channel patterns 

If there are no channels in the scope of the channelList that are on the forbidden list, the string 
returned is empty or nil. The format of the channels in the response string is slot, row, column for 
matrix channels. 

 

Example 
 

channel.reset("slot1") 
channel.setforbidden("1A01:1A05") 
print(channel.getforbidden("allslots")) 
print(channel.getforbidden("slot1")) 
print(channel.getforbidden( 
   "1A01:1A03,1B04,1B08,1B12")) 

Reset the channels. 
Set channels 1A01, 1A02, 1A03, 1A04, and 
1A05 to be forbidden. 
List the forbidden channels on all slots, slot 1, 
and list of channels. 
 
Output: 
1A01,1A02,1A03,1A04,1A05 
1A01,1A02,1A03,1A04,1A05 
1A01,1A02,1A03 

 

Also see 

channel.clearforbidden() (on page 7-16) 
channel.setforbidden() (on page 7-42) 
Data retrieval commands (on page 5-3) 

 

channel.getlabel() 
This function retrieves the label associated with one or more channels. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 

Create configuration script 
Save setup 

slot, row, column  identifier 

 

Usage 

label = channel.getlabel(channelList) 
 

label A string listing the comma-delimited labels for items in channelList 

channelList A string listing the channels to query for the label associated with them 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-29 

 

Details 

The channelList parameter can contain more than one channel. If it does, a comma delimits the 
labels for the channels. The return string lists the labels in the same order that the channels were 
specified. The channelList parameter cannot be an empty string and must be a valid channel. 
The channelList parameter can contain slotX (where X equals 1 to 6 for Model 707B, or 1 for 
Model 708B) or allslots. In this case, the channels are listed before the analog backplane relays. 

• An error is generated if: 
• The slot is empty 
• The specified channel is not on the installed card 
• A channel pattern is specified 

Command processing stops as soon as an error is detected, and then a nil response is generated. 
No partial list of labels is returned. 

 

Example 
 

channel.reset("1A01") 
print(channel.getlabel("1A01")) 
channel.setlabel("1A01", "Device") 
print(channel.getlabel("1A01")) 

Reset the channel. 
Print the default label of the channel. 
Set the label to "Device". 
Return the new label. 
Output: 
1A01 
Device 

 

Also see 

channel.setlabel() (on page 7-43) 
Data retrieval commands (on page 5-3) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-30 707B-901-01 Rev. B / January 2015 

 

channel.getlabelcolumn() 
This function retrieves the label that was assigned to a column. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 

Create configuration script Empty string or blank 

Usage 

label = channel.getlabelcolumn(channelList) 
 

label A string that lists the comma-delimited labels for the items in channelList. 

channelList A string that lists the channels to query for the labels associated with them. 

Details 

The parameter channelList can contain more than one channel. Use a comma to delimit the labels 
for the channels. The return string label lists the labels in the same order that the channels are 
specified. 
You cannot specify a channel pattern. 
The channelList parameter can contain slotX (where X equals 1 to 6 for Model 707B, or 1 for 
Model 708B) or allslots. It can also contain a label. However, if the label exists, it is in the returned 
response and not the numeric channel number.  

Example 
 

channel.setlabelcolumn("1A01", "DUT1") 
channel.setlabelcolumn("1A03", "DUT2") 
print(channel.getlabelcolumn("1a01:1a12")) 

Label all the column labels on a card. 
Output: 
DUT1,,DUT2,,,,,,,,, 
Also note the change on the display. 

Also see 

channel.getlabelrow() (on page 7-31) 
channel.setlabelcolumn() (on page 7-44) 
channel.setlabelrow() (on page 7-46) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-31 

 

channel.getlabelrow() 
This function retrieves the label assigned to a row. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 

Create configuration script Empty string or blank 

Usage 

label = channel.getlabelrow(channelList) 
 

label A string that lists the comma-delimited labels for the items in channelList. 

channelList A string that lists the channels to query for the labels associated with them. 

Details 

The parameter channelList can contain more than one channel. If it does, use a comma to delimit 
the labels for the channel rows. The return string label lists the labels in the same order that the 
channels are specified. 
The channelList parameter can contain slotX (where X equals 1 to 6 for Model 707B, or 1 for 
Model 708B) or allslots. It can also contain a label, but it cannot contain a channel pattern. 

Example 
 

channel.setrowlabel("1A01", "DUT1") 
channel.setrowlabel("1C01", "DUT2") 
print(channel.getlabelrow("1A01, 1B01, 

1C01, 1D01, 1E01, 1F01, 1G01, 1H01")) 

Label the row labels on a card. 
Output: 
DUT1,,DUT2,,,,,, 
Also note the change on the display. 

Also see 

channel.getlabelcolumn() (on page 7-30) 
channel.setlabelcolumn() (on page 7-44) 
channel.setlabelrow() (on page 7-46) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-32 707B-901-01 Rev. B / January 2015 

 

channel.getstate() 
Queries the state indicators of the channels in the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 

Not saved 0 

Usage 

state = channel.getstate(channelList) 
state = channel.getstate(channelList, indicatorMask) 
 

state Return string listing the comma-delimited states for the channels in channelList 
channelList String specifying the channels to query, using normal channel list syntax 
indicatorMask Value to specify only certain indicators; if omitted, all indicators are returned 

Details 

Each bit in the state represents a different indicator. Therefore, multiple indicators can be present 
(the OR operation is performed bitwise). The optional state indicatorMask can be used to return 
only certain indicators. If there is no indicatorMask, then all indicators are returned. 
Indicators can be latched or unlatched, depending on other system settings. Latched indicators mean 
that the condition has occurred since the last reset command (or power cycle). Unlatched indicators 
mean that the condition occurred when the channel.getstate() command was issued. 
Although the channel.getstate() command returns a string representing a number, this can be 
easily changed to a number and then compared to one of the provided Lua constants. 
The only state information is an indicator of relay state (channel.IND_CLOSED). 

 

Example 
 

print(channel.getstate("4A01:4B08")) 
 
channel.pattern.setimage("1A01,2B02,3C03", 
   "Path") 
print(channel.getstate("Path")) 
print(channel.getstate("3C03")) 
 
-- Unmasking the return value must be done 
-- one channel at a time. 
if bit.bitand(channel.IND_CLOSED, 
   tonumber(channel.getstate("4A10"))) == 1 

then 
   print("CLOSED") 
else 
   print("OPENED") 
end 

Query the state of the first 20 channels on slot 4. 
See the state of channels in channel pattern 
called "PathList". 
 
The channel.IND_CLOSED command equates 
to the number 1. Because the state is a bit-
oriented value, you must perform a logical AND 
operation on the state to the overload constant to 
isolate it from other indicators. 
 
The tonumber() command only works with a 
single channel. When multiple channels are 
returned (for example, 
channel.getstate("slot4")), this string 
must be parsed by the comma delimiter to find 
each value. 

Also see 

channel.getclose() (on page 7-24) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-33 

 

channel.gettype() 
This function returns the type associated with a channel. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

type = channel.gettype(channelList) 
 

type Returns a string listing the comma-delimited types for channels in channelList 

channelList String specifying the channels to query, using normal channelList syntax 

Details 

The channel type is defined by the physical hardware of the card on which the channel exists. The 
only valid channel type for the Models 707B and 708B is channel.TYPE_SWITCH or 1. 

Example 1 
 

print(channel.gettype("1A01")) Query the channel type of row 1, column 1, in 
slot 1. 

Also see 

None 
 

 
 

channel.open() 
This function opens the specified channels and channel patterns. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.open(channelList) 
 

channelList String listing the channels and channel patterns to open 
 

Details 

This function opens the specified channels based on the channel's switching configuration. 
The settling time associated with a channel must elapse before the command completes. User delay 
is not added when a relay opens. 

 

Example 1 
 

channel.open("1A01:1A05, 3B03, Chans") Opens channels in row 1, columns 01 to 05 on 
slot 1; row 2, column 03 on slot 3; and the 
channels in the channel pattern Chans. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-34 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

channel.open("slot3, slot5") Opens all channels on slots 3 and 5. 
 

Example 3 
 

channel.open("allslots") Opens all channels on all slots. 
 

Also see 

channel.close() (on page 7-17) 
channel.exclusiveclose() (on page 7-22) 
channel.exclusiveslotclose() (on page 7-23) 
channel.getclose() (on page 7-24) 
channel.getdelay() (on page 7-26) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 
channel.pattern.snapshot() (on page 7-39) 
channel.getstate() (on page 7-32) 
channel.setdelay()   (on page 7-41) 
channel.setforbidden() (on page 7-42)  

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-35 

 

channel.pattern.catalog() 
This function creates a list of the user-created channel patterns. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

for name in channel.pattern.catalog() do 
   ... 
end 
 

name String representing the user-defined name of the channel pattern that is assigned 
by the catalog function during the for loop 

Details 

This function allows you to print or delete all user-created channel patterns in the run-time 
environment. The entries that are returned are listed in random order. 

Example 
 

channel.pattern.setimage("1A01,1A02", 
   "patternA") 
channel.pattern.setimage("1B01,1B02", 
   "patternB") 
channel.pattern.setimage("1C01,1C02", 
   "patternC") 
 
for name in channel.pattern.catalog() do 
   print(name .. " = " .. 
      channel.pattern.getimage(name)) 
   channel.pattern.delete(name) 
end 

This example prints the names and items 
associated with all user-created channel 
patterns. It then deletes the channel pattern. 
patternC = 1C01,1C02 
patternA = 1A01,1A02 
patternB = 1B01,1B02 

Also see 

channel.pattern.delete() (on page 7-36) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 
channel.pattern.snapshot() (on page 7-39) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-36 707B-901-01 Rev. B / January 2015 

 

channel.pattern.delete() 
This function deletes a channel pattern. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.pattern.delete(name) 
 

name A string representing the name of the channel pattern to delete 

Details 

An error is generated if the name does not exist as a channel pattern. 

Example 
 

channel.pattern.delete("Channels") Deletes a channel pattern called Channels. 

Also see 

channel.pattern.catalog() (on page 7-35) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 
channel.pattern.snapshot() (on page 7-39) 

 

channel.pattern.getimage() 
This function queries a channel pattern for associated channels. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 
Pole setting change 

Create configuration script 
Save setup 
 

Not applicable 

 

Usage 

channelList = channel.pattern.getimage(name) 
 

channelList A string specifying a list of channels that are represented by the name 

name A string representing the name of the channel pattern to query 
 

Details 

The returned string lists the channels in the slot, row, column format, even if a channel pattern was 
used to create it. Results for multiple channel patterns are delimited by a semicolon (;). Commas 
delimit the specific channels in a single channel pattern in the string. 
If you change a pole setting for a channel that is associated with a channel pattern, the channel 
pattern is deleted.  Be sure to  configure the pole setting for channels (channel.setpole) before 
creating a channel pattern. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-37 

 

Example 
 

channel.pattern.setimage("1A01:1A05", "myPattern") 
channel.pattern.setimage("1B01,1B03,1B05", "myRoute") 
 
myImage = channel.pattern.getimage("myPattern") 
print(myImage) 
print(channel.pattern.getimage("myRoute"))  
print(channel.pattern.getimage("myRoute, myPattern")) 

Using a Model 7174 (or similar 
model) card in slot 1, this example 
creates two channel patterns and 
then queries these patterns. 
 
Output: 
1A01,1A02,1A03,1A04,1A05 
1B01,1B03,1B05 
1B01,1B03,1B05;1A01,1A02,1A

03,1A04,1A05 
 
 

Also see 

channel.pattern.catalog() (on page 7-35) 
channel.pattern.delete() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 

 
 
 

channel.pattern.setimage() 
This function creates a channel pattern and associates it with the specified name. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 
Pole setting change 

Create configuration script 
Save setup 

Not applicable 

 

Usage 

channel.pattern.setimage(channelList, name) 
 

channelList A string listing the channels and channel patterns to use when creating the new 
channel pattern 

name A string representing the name to associate with the new channel pattern 

 

Details 

If name is used for an existing channel pattern, that pattern is overwritten with the new pattern 
channel image (if no errors occur). The previous image associated with the name is lost. 
The channel pattern is not created if an error is detected. You can create a channel pattern with an 
empty channelList parameter.Once a channel pattern is created, the only way to add a channel to 
an existing pattern is to delete the old pattern and recreate the pattern with the new items. 
If you change a pole setting for a channel that is associated with a channel pattern, the channel 
pattern is deleted.  Be sure to  configure the pole setting for channels (channel.setpole) before 
creating a channel pattern. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-38 707B-901-01 Rev. B / January 2015 

 

Channel patterns are stored when you run the createconfigscript() command or 
setup.save() command. 
Channel patterns are lost when power is cycled. Use setup.recall() or a script created with 
createconfigscript() to restore them. 
The following restrictions exist when naming a channel pattern: 

• The name must contain only letters, numbers, or underscores 
• The name must start with a letter 
• The name is case sensitive 

 

Examples of valid names: 
• Channels 
• Chans 
• chans 
• Path1 
• Path20 
• path_3 

Examples of invalid names: 
• 1path (invalid because it starts with a number) 
• my chans (invalid because it contains a space) 
• My,chans (invalid because it contains a comma) 
• Path1:10 ( invalid because it contains a colon) 

 

An error is generated if: 
• The name parameter already exists as a label 
• Any channel is forbidden to close 
• Insufficient memory exists to create the channel pattern 
• The parameter string contains slotX (where X equals 1 to 6 for Model 707B, or 1 for Model 708B) or 

allslots 
• The name parameter contains a space character 
• The pattern name exceeds 19 characters 

 

Example 1 
 

channel.pattern.setimage("1A01:1A10", "Channels") 
 
oldList = channel.pattern.getimage("Channels") 
newList = oldList .. ", 1C11" 
channel.pattern.delete("Channels") 
channel.pattern.setimage(newList, "Channels") 
channel.close("Channels, 1D11") 
 
Items = channel.pattern.getimage("Channels") 
channel.pattern.setimage(Items, "Pattern") 
channel.pattern.delete("Channels") 

For this example, assume there is a 
Keithley Model 7174 or similar card in 
slot 1. 
 
Creates a pattern, appends a channel to 
the pattern by retrieving the pattern and 
recreating it, and then renames the pattern. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-39 

 

Also see 

createconfigscript() (on page 7-47) 
channel.pattern.catalog() (on page 7-35) 
channel.pattern.delete() (on page 7-36) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.snapshot() (on page 7-39) 

 

channel.pattern.snapshot() 
This function creates a channel pattern. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 
Pole setting change 

Create configuration script 
Save setup 

Not applicable 

 

Usage 

channel.pattern.snapshot(name) 
 

name A string representing the name to associate with the present state of channels 
 

Details 

This command stores an image of presently closed channels and associates them with the name 
parameter. 
If name is already used for an existing channel pattern, that pattern is overwritten with the new pattern 
channel image (if no errors occur).  
The following restrictions exist when naming a channel pattern: 

• The name must contain only letters, numbers, or underscores 
• The name must start with a letter 
• The name is case sensitive 

 

Examples of valid names: 
• Channels 
• Chans 
• chans 
• Path1 
• Path20 
• path_3 

Examples of invalid names: 
• 1path (invalid because it starts with a number) 
• my chans (invalid because it contains a space) 
• My,chans (invalid because it contains a comma) 
• Path1:10 ( invalid because it contains a colon) 

An error is generated if: 
• The name parameter already exists as a label 
• Insufficient memory exists to save the channel pattern and name in persistent memory 
• The pattern name exceeds 19 characters or contains a space 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-40 707B-901-01 Rev. B / January 2015 

 

Issuing this function on an existing pattern invalidates the existing scan list (the pattern may or may 
not be used in the current scan list). Creating a new pattern does not invalidate the existing scan list. 
Channel patterns are stored when you run the createconfigscript() command or 
setup.save() command. 
Channel patterns are lost when power is cycled. Use setup.recall() or a script created with 
createconfigscript() to restore them. 
If you change a pole setting for a channel that is associated with a channel pattern, the channel 
pattern is deleted.  Be sure to  configure the pole setting for channels (channel.setpole) before 
creating a channel pattern. 

Example 
 

channel.pattern.snapshot("voltagePath") Creates a pattern named voltagePath that 
contains the presently closed channels. 

 

Also see 

createconfigscript() (on page 7-47) 
channel.pattern.catalog() (on page 7-35) 
channel.pattern.delete() (on page 7-36) 
channel.pattern.getimage() (on page 7-36) 
channel.pattern.setimage() (on page 7-37) 

 

channel.reset() 
This function resets the specified channel list items to factory default settings. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

channel.reset(channelList) 
 

channelList A string that lists the items to reset; the string can include: 
• allslots 
• slotX, where X is the slot number 
• channel patterns 
• channels, including a range of channels 

 

Details 

For the items specified in channelList, the following actions occur: 
• Any closed channels open 
• Additional user delay is set to zero (0) 
• Labels are removed 
• If the channel is forbidden to close, it is cleared from being forbidden to close 
• If the channels are used in channel patterns, the channel patterns that contain the channels are deleted. 

 

Using this function to reset a channel involved in scanning invalidates the existing scan list. The list 
has to be recreated before scanning again. 
The rest of the instrument settings are unaffected. To reset the entire system to factory default 
settings, use the reset() command. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-41 

 

Example 1 
 

channel.reset("allslots") Performs a reset operation on all channels on 
the instrument. 

Example 2 
 

channel.reset("slot1") Resets channels on slot 1 only. 

Example 3 
 

channel.reset("3A01:3A05") Resets only row 1, columns 1 through 5 on 
Slot 3. 

 

Example 4 
 

channel.reset("5C05, 5D16") Resets row 3, column 5, and row 4 column 16, 
on slot 5. 

 

Also see 

Channel functions and attributes (on page 5-4) 
reset() (on page 7-135) 

 

channel.setdelay() 
This function sets additional delay time for specified channels. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recalls setup 

Create configuration script 
Save setup 

0 

Usage 

channel.setdelay(channelList, value) 
 

channelList A string listing the channels that need modifications to their delay time 

value Desired delay time for items in channelList. Minimum is 0 seconds 

Details 

The user delay is an additional delay that is added after a channel is closed. You can use this delay 
to allow additional settle time for a signal on that channel. For most cards, the resolution of the delay 
is 10 µs. However, check the documentation for your card to verify. To see if the delay value was 
modified after setting, use the channel.getdelay() command to query. 
Channel patterns get their delay from the channels that comprise the pattern. Therefore, specify the 
delay for a pattern through the channels. A pattern incurs the longest delay of all channels comprising 
that pattern. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-42 707B-901-01 Rev. B / January 2015 

 

An error message is generated if: 
• The value is an invalid setting for the specified channel 
• A channel pattern is specified 
• The channel is for an empty slot 

Command processing will stop as soon as an error is detected and no delay times will be modified. 

Pseudocards do not replicate the additional delay time. 

Example 1 
 

channel.setdelay("1A03, 1A05", 50e-6) Sets row 1 and columns 3 and 5 of slot 1 for a 
delay time of 50 microseconds. 

 

Example 2 
 

channel.setdelay("slot1", 0) Sets the channels on slot 1 for 0 delay time. 

Also see 

channel.getdelay() (on page 7-26) 
 

channel.setforbidden() 
This function prevents the closing of specified channels. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 

Create configuration script 
Save setup 

Not forbidden 

Usage 

channel.setforbidden(channelList) 
 

channelList A string that lists the channels to make forbidden to close 

Details 

The channelList parameter indicates the scope of channels affected and may include: 
• allslots or slotX (where X equals 1 to 6 for Model 707B, or 1 for Model 708B) 
• Channel ranges or individual channels 

This function prevents all items contained in the channel list parameter from closing. It applies the 
"forbidden to close" attribute to the specified channels. To remove the "forbidden to close" attribute, 
use channel.clearforbidden(). 
If a channel that is being set to forbidden is used in a channel pattern, the channel pattern is deleted 
when the channel is set to forbidden. Note that if the channelList parameter includes a channel 
pattern, the channel pattern will be deleted when the channels in the patterns are successfully set to 
forbidden to close. 
The channels in the channelList parameter must be installed in the instrument. 
If the scan list contains a channel that is forbidden, the scan list is invalidated. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-43 

 

Example 
 

channel.pattern.setimage("1A01,1A02", 
   "patternA") 
channel.pattern.setimage("1B01,1B02", 
   "patternB") 
channel.pattern.setimage("1C01,1C02", 
   "patternC") 
 
for name in channel.pattern.catalog() do 
   print(name .. " = " .. 
      channel.pattern.getimage(name)) 
end 
 
channel.setforbidden("1A02, 1B01") 
for name in channel.pattern.catalog() do 
   print(name .. " = " .. 
      channel.pattern.getimage(name)) 
end 

Create three channel patterns, and then print. 
 
 
 
 
 
 
 
 
 
 
 
Set forbidden for one channel from patternA 
and patternB, then print the catalog again. Only 
patternC should remain. 
 
Assuming no existing channel patterns, the 
output is: 
patternC = 1C01,1C02 
patternA = 1A01,1A02 
patternB = 1B01,1B02 
patternC = 1C01,1C02 

Also see 

channel.clearforbidden() (on page 7-16) 
channel.getforbidden() (on page 7-27) 

 

 
 

channel.setlabel() 
This function sets the label associated with a channel. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Recall setup 

Create configuration script 
Save setup 

No label 

 

Usage 

channel.setlabel(channelList, label) 
 

channelList A string that lists the channel to which to set the label 

label A string that represents the label for the channel in channelList, up to 19 characters 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-44 707B-901-01 Rev. B / January 2015 

 

Details 

This command sets the label of the channel specified in channelList to the value specified in the 
label parameter. The channel attributes associated with each channel remain unchanged except for 
their labels.  
The label parameter must be unique. In addition, it cannot be the same as the name of a channel 
pattern, row label, or column label. If you specify a label that already exists, an error message is 
generated that indicates a parameter error and channel that that is already associated the specified 
label. 
To clear the label, set label to an empty string ("") or to a string with a space as the first character. 
After defining a label, you can use it to specify the channel instead of using the channel specifier. 
An error is generated if: 

• The card in the channel slot does not support a label setting 
• The label contains a space; however, if the first character is a space, the label is cleared 
• The label is already used to represent a channel pattern 

The label does not persist through a power cycle. 
 

Example 1 
 

channel.setlabel("1A01", "start") 
channel.close("start") 
print(channel.getclose("allslots")) 

Sets the label for channel row 1 and column 01 
on slot 1 to "start". 
Output: 
1A01 

 

Example 2 
 

channel.setlabel("1A01", "") Clears the label for channel row 1 and 
column 01, slot 1 back to "1A01". 

 

Example 3 
 

channel.setlabel("1A01", " ") Also clears the label for channel row 1 and 
column 01, slot 1 back to "1A01". 

 

Also see 

channel functions and attributes (on page 5-4) 
channel.setlabelcolumn() (on page 7-44) 
channel.setlabelrow() (on page 7-46) 

 

channel.setlabelcolumn() 
This function assigns a label to a column. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 

Create configuration script Empty string or blank 

 

Usage 

channel.setlabelcolumn(channel, label) 
 

channel A string that specifies the channel that contains the column to which the label will be 
applied 

label A string that lists the label for the channel column, up to eight characters 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-45 

 

Details 

A column label can be applied to columns of a matrix card. The label is then used on the display and 
can be accessed in a channel list (see About channel commands (on page 5-5)). For channel, you 
can specify any channel in the column. You cannot specify a channel pattern. 
The row and column label parameters must be unique. In addition, they cannot be the same as the 
name of a channel pattern or channel label. 
After defining a column label, you can use it with a row label to specify a channel instead of the 
channel specifier. 
On the crosspoint display, the first four characters of the label are displayed. On the bottom display, 
the full label is displayed. 

 

Since a column label is common to all channels in that column, you only need to assign the column 
label to one channel. 

 

Example 1 
 

channel.setlabelrow("1B01", "SMU2")     
channel.setlabelcolumn("1B02", "DUT2")   
channel.close("SMU2+DUT2")    
print(channel.getclose("allslots")) 

Sets the label for the slot 1, row 2 to "SMU2" 
and slot 1, column 2 to "DUT2". 
Use the labels to close a channel. 
Output: 
1B02 

 

Example 2 
 

channel.setlabelcolumn("1A01", "") Clears the label for column 1 on slot 1 back to 
default. 

 

Example 3 
 

channel.setlabelcolumn("1A01", " ") Also clears the label for column 1 on slot 1 
back to default. 

 

Example 4 
 

channel.setlabelcolumn("2B01", "TwoC") 
print(channel.getlabelcolumn("slot2")) 

This example assumes a Model 7072 in slot 2. 
 
Set the label to be TwoC, which assigns the 
label to all channels in the column. Output: 
TwoC,,,,,,,,,,,,TwoC,,,,,,,,,,,,Tw

oC,,,,,,,,,,,,TwoC,,,,,,,,,,,,T
woC,,,,,,,,,,,,TwoC,,,,,,,,,,,,
TwoC,,,,,,,,,,,,TwoC,,,,,,,,,,, 

 

Also see 

channel.getlabelcolumn() (on page 7-30) 
channel.getlabelrow() (on page 7-31) 
channel.setlabelrow() (on page 7-46) 

 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-46 707B-901-01 Rev. B / January 2015 

 

channel.setlabelrow() 
This function assigns a label to a row. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 

Create configuration script Empty string or blank 

 

Usage 

channel.setlabelrow(channel, label) 
 

channel A string that specifies the channel that contains the row to which to apply a label. 

label A string that lists the label for the channel row, up to eight characters. 
 

Details 

A row label can be applied to columns of a matrix card. The label is then used on the display and can 
be accessed in a channel list (see About channel commands (on page 5-5)). For channel, you can 
specify any channel in the row. You cannot specify a channel pattern. 
The row and column label parameters must be unique. In addition, they cannot be the same as the 
name of a channel pattern. 
You can only set labels for slots and channels that are installed in the instrument. 
After defining a row label, you can use it to specify a channel instead of the default channel 
designation. 
On the crosspoint display, the first four characters of the label are displayed. On the bottom display, 
the full label is displayed. 
Labels can only be set for matrix cards. 

 

Since a row label is common to all channels in that row, you only need to assign the row label to one 
channel. 

 

Example 1 
 

channel.setlabelrow("1B01", "SMU2")     
channel.setlabelcolumn("1B02", "DUT2")   
channel.close("SMU2+DUT2")    
print(channel.getclose("allslots")) 

Sets the label for the slot 1, row 2 to "SMU2" 
and slot 1, column 2 to "DUT2". 
Use the labels to close a channel. 
Output: 
1B02 

 

Example 2 
 

channel.setlabelrow("1A01", "") Clears the label for row 1 on slot 1 back to 
default. 

 

Example 3 
 

channel.setlabelrow("1A01", " ") Also clears the label for row 1 on slot 1 back to 
default. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-47 

 

Example 4 
 

channel.setlabelrow("2B01", "Row2") 
print(channel.getlabelrow("slot2")) 

This example assumes a 7072 in slot 2. 
 
Set the label to be Row2, which assigns the label 
to all channels in the row. The output is now : 
,,,,,,,,,,,,Row2,Row2,Row2,Row2,Row2

,Row2,Row2,Row2,Row2,Row2,Row2,Ro
w2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,, 

 

Also see 

channel.getlabelcolumn() (on page 7-30) 
channel.getlabelrow() (on page 7-31) 
channel.setlabelcolumn() (on page 7-44) 

 

createconfigscript() 
This function creates a setup file that captures most of the present settings of the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

createconfigscript(scriptName) 
 

scriptName A string that represents the name of the script that will be created 

Details 

If scriptName is set to autoexec, the autoexec script in the instrument is replaced by the new 
configuration script. 
If scriptName is set to the name of an existing script, the existing script is overwritten. 
Once created, the script that contains the settings can be run and edited like any other script. 

Example 
 

createconfigscript("August2013") Captures the present settings of the instrument 
into a script named August2013. 

Also see 

Create a configuration script (on page 2-100) 
Save the present configuration (on page 2-98) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-48 707B-901-01 Rev. B / January 2015 

 

dataqueue.add() 
This function adds an entry to the data queue. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

result = dataqueue.add(value) 
result = dataqueue.add(value, timeout) 
 

result The resulting value of true or false based on the success of the function 
value The data item to add; value can be of any type 
timeout The maximum number of seconds to wait for space in the data queue 

 

Details 

You cannot use the timeout value when accessing the data queue from a remote node (you can 
only use the timeout value while adding data to the local data queue). 
The timeout value is ignored if the data queue is not full. 
The dataqueue.add() function returns false: 

• If the timeout expires before space is available in the data queue 
• If the data queue is full and a timeout value is not specified 

If the value is a table, a duplicate of the table and any subtables is made. The duplicate table does 
not contain any references to the original table or to any subtables. 

 

Example 
 

dataqueue.clear() 
dataqueue.add(10) 
dataqueue.add(11, 2) 
result = dataqueue.add(12, 3) 
if result == false then 
   print("Failed to add 12 to the dataqueue") 
end 
print("The dataqueue contains:") 
while dataqueue.count > 0 do 
   print(dataqueue.next()) 
end 

Clear the data queue. 
Each line adds one item to the data queue. 
Output: 
The dataqueue contains: 
1.0000000e+01 
1.1000000e+01 
1.2000000e+01 

Also see 

dataqueue.CAPACITY (on page 7-49) 
dataqueue.clear() (on page 7-49) 
dataqueue.count (on page 7-50) 
dataqueue.next() (on page 7-51) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-49 

 

dataqueue.CAPACITY 
This constant is the maximum number of entries that you can store in the data queue. 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    

Usage 

count = dataqueue.CAPACITY 
 

count The variable that is assigned the value of dataqueue.CAPACITY 
 

Details 

This constant always returns the maximum number of entries that can be stored in the data queue. 

Example 
 

MaxCount = dataqueue.CAPACITY 
while dataqueue.count < MaxCount do 
   dataqueue.add(1) 
end 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 

This example fills the data queue until it is full 
and prints the number of items in the queue. 
Output: 
There are 128 items in the data 

queue 

Also see 

dataqueue.add() (on page 7-48) 
dataqueue.clear() (on page 7-49) 
dataqueue.count (on page 7-50) 
dataqueue.next() (on page 7-51) 

 

dataqueue.clear() 
This function clears the data queue. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

dataqueue.clear() 
 

Details 

This function forces all dataqueue.add() commands that are in progress to time out and deletes all 
data from the data queue. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-50 707B-901-01 Rev. B / January 2015 

 

Example 
 

MaxCount = dataqueue.CAPACITY 
while dataqueue.count < MaxCount do 
   dataqueue.add(1) 
end 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 
dataqueue.clear() 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 

This example fills the data queue and prints the 
number of items in the queue. It then clears the 
queue and prints the number of items again. 
Output: 
There are 128 items in the data 

queue 
There are 0 items in the data queue 

Also see 

dataqueue.add() (on page 7-48) 
dataqueue.CAPACITY (on page 7-49) 
dataqueue.count (on page 7-50) 
dataqueue.next() (on page 7-51) 

 

dataqueue.count 
This attribute contains the number of items in the data queue. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Power cycle Not saved Not applicable 

Usage 

count = dataqueue.count 
 

count The number of items in the data queue 

Details 

The count is updated as entries are added with dataqueue.add() and read from the data queue 
with dataqueue.next(). It is also updated when the data queue is cleared with 
dataqueue.clear(). 
A maximum of dataqueue.CAPACITY items can be stored at any one time in the data queue. 

 

Example 
 

MaxCount = dataqueue.CAPACITY 
while dataqueue.count < MaxCount do 
   dataqueue.add(1) 
end 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 
dataqueue.clear() 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 

This example fills the data queue and prints the 
number of items in the queue. It then clears the 
queue and prints the number of items again. 
Output: 
There are 128 items in the data queue 
There are 0 items in the data queue 

Also see 

dataqueue.add() (on page 7-48) 
dataqueue.CAPACITY (on page 7-49) 
dataqueue.clear() (on page 7-49) 
dataqueue.next() (on page 7-51) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-51 

 

dataqueue.next() 
This function removes the next entry from the data queue. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

value = dataqueue.next() 
value = dataqueue.next(timeout) 
 

value The next entry in the data queue 
timeout The number of seconds to wait for data in the queue 

 

Details 

If the data queue is empty, the function waits up to the timeout value. 
If data is not available in the data queue before the timeout expires, the return value is nil. 
The entries in the data queue are removed in first-in, first-out (FIFO) order. 
If the value is a table, a duplicate of the original table and any subtables is made. The duplicate table 
does not contain any references to the original table or to any subtables. 

 

Example 
 

dataqueue.clear() 
for i = 1, 10 do 
   dataqueue.add(i) 
end 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 
 
while dataqueue.count > 0 do 
   x = dataqueue.next() 
   print(x) 
end 
print("There are " .. dataqueue.count 
   .. " items in the data queue") 

Clears the data queue, adds ten entries, then 
reads the entries from the data queue. Note that 
your output may differ depending on the setting 
of format.asciiprecision. 
Output: 
There are 10 items in the data queue 
1.000000000e+00 
2.000000000e+00 
3.000000000e+00 
4.000000000e+00 
5.000000000e+00 
6.000000000e+00 
7.000000000e+00 
8.000000000e+00 
9.000000000e+00 
1.000000000e+01 
There are 0 items in the data queue 

Also see 

dataqueue.add() (on page 7-48) 
dataqueue.CAPACITY (on page 7-49) 
dataqueue.clear() (on page 7-49) 
dataqueue.count (on page 7-50) 
format.asciiprecision (on page 7-89) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-52 707B-901-01 Rev. B / January 2015 

 

delay() 
This function delays the execution of the commands that follow it. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

delay(seconds) 
 

seconds The number of seconds to delay (0 to 100,000 s) 

Details 

The instrument delays execution of the commands for at least the specified number of seconds and 
fractional seconds. However, the processing time may cause the instrument to delay 5 μs to 10 μs 
(typical) more than the requested delay. 

 

Example 
 

beeper.beep(0.5, 2400) 
delay(0.250) 
beeper.beep(0.5, 2400) 

Emit a double-beep at 2400 Hz. The sequence is 
0.5 s on, 0.25 s off, 0.5 s on. 

 

Also see 

None 
 

digio.readbit() 
This function reads one digital I/O line. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    
 

Usage 

data = digio.readbit(N) 
 

data The state of the I/O line 

N Digital I/O line number to be read (1 to 14) 
 

Details 

A returned value of zero (0) indicates that the line is low. A returned value of one (1) indicates that the 
line is high. 

 

Example 
 

print(digio.readbit(4)) Assume line 4 is set high, and it is then read. 
Output: 
1.0000000e+00 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-53 

 

Also see 

digio.readport() (on page 7-53) 
digio.writebit() (on page 7-61) 
digio.writeport() (on page 7-62) 
Digital I/O port (on page 2-7) 

 

digio.readport() 
This function reads the digital I/O port. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

data = digio.readport() 
 

data The present value of the input lines on the digital I/O port 

Details 

The binary equivalent of the returned value indicates the value of the input lines on the I/O port. The 
least significant bit (bit B1) of the binary number corresponds to line 1; bit B14 corresponds to line 14. 
For example, a returned value of 170 has a binary equivalent of 000000010101010, which indicates 
that lines 2, 4, 6, and 8 are high (1), and the other 10 lines are low (0). 

 

Example 
 

data = digio.readport() 
print(data) 

Assume lines 2, 4, 6, and 8 are set high when 
the I/O port is read. 
Output: 
1.7000000e+02 
 
This is binary 10101010 

Also see 

digio.readbit() (on page 7-52) 
digio.writebit() (on page 7-61) 
digio.writeport() (on page 7-62) 
Digital I/O port (on page 2-7) 

 
 

digio.trigger[N].assert() 
This function asserts a trigger pulse on one of the digital I/O lines. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

digio.trigger[N].assert() 
 

N Digital I/O trigger line (1 to 14) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-54 707B-901-01 Rev. B / January 2015 

 

Details 

The pulse width that is set determines how long the instrument asserts the trigger. 
 

Example 
 

digio.trigger[2].assert() Asserts a trigger on digital I/O line 2. 
 

Also see 

digio.trigger[N].pulsewidth (on page 7-57) 
 

digio.trigger[N].clear() 
This function clears the trigger event on a digital I/O line. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    
 

Usage 

digio.trigger[N].clear() 
 

N Digital I/O trigger line (1 to 14) 
 

Details 

The event detector of a trigger enters the detected state when an event is detected. It is cleared when 
digio.trigger[N].wait() or digio.trigger[N].clear() is called. 
digio.trigger[N].clear() clears the event detector of the specified trigger line, discards the 
history of the trigger line, and clears the digio.trigger[N].overrun attribute. 

 

Example 
 

digio.trigger[2].clear() Clears the trigger event detector on I/O line 2. 
 

Also see 

digio.trigger[N].overrun (on page 7-57) 
digio.trigger[N].wait() (on page 7-61) 

 

digio.trigger[N].EVENT_ID 
This constant identifies the trigger event generated by the digital I/O line N. 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    
 
 

Usage 

eventID = digio.trigger[N].EVENT_ID 
 

eventID The trigger event number 
N Digital I/O trigger line (1 to 14) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-55 

 

Details 

To have another trigger object respond to trigger events generated by the trigger line, set the other 
object's stimulus attribute to the value of this constant. 

 

Example 1 
 

digio.trigger[5].stimulus = digio.trigger[3].EVENT_ID Uses a trigger event on digital I/O 
trigger line 3 to be the stimulus for 
digital I/O trigger line 5. 

 

Example 2 
 

scan.trigger.arm.stimulus = 
   digio.trigger[3].EVENT_ID 

Uses a trigger event on digital I/O 
trigger line 3 to be the stimulus for 
starting a scan. 

Also see 

None 
 
 

digio.trigger[N].mode 
This attribute sets the mode in which the trigger event detector and the output trigger generator operate on the 
given trigger line. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Digital I/O trigger N reset 
Recall setup 

Create configuration script  0 
(digio.TRIG_BYPASS) 

 

Usage 

triggerMode = digio.trigger[N].mode 
digio.trigger[N].mode = triggerMode 
 

triggerMode The trigger mode; see Details for values 
N Digital I/O trigger line (1 to 14) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-56 707B-901-01 Rev. B / January 2015 

 

Details 

Set triggerMode to one of the following values: 
Trigger mode values 
triggerMode Description 

digio.TRIG_BYPASS or 0 Allows direct control of the line. 
digio.TRIG_FALLING or 1 Detects falling-edge triggers as input; asserts a TTL-low pulse for 

output. 
digio.TRIG_RISING or 2 If the programmed state of the line is high, the 

digio.TRIG_RISING mode behavior is similar to 
digio.TRIG_RISINGA. If the programmed state of the line is low, 
the digio.TRIG_RISING mode behavior is similar to 
digio.TRIG_RISINGM. This setting should only be used if 
necessary for compatibility with other Keithley Instruments products. 

digio.TRIG_EITHER or 3 Detects rising- or falling-edge triggers as input. Asserts a TTL-low 
pulse for output. 

digio.TRIG_SYNCHRONOUSA or 4 Detects the falling-edge input triggers and automatically latches and 
drives the trigger line low. Asserting the output trigger releases the 
latched line. 

digio.TRIG_SYNCHRONOUS or 5 Detects the falling-edge input triggers and automatically latches and 
drives the trigger line low. Asserts a TTL-low pulse as an output 
trigger. 

digio.TRIG_SYNCHRONOUSM or 6 Detects rising-edge triggers as input. Asserts a TTL-low pulse for 
output. 

digio.TRIG_RISINGA or 7 Detects rising-edge triggers as input. Asserts a TTL-low pulse for 
output. 

digio.TRIG_RISINGM or 8 Asserts a TTL-high pulse for output. Input edge detection is not 
possible in this mode. 

 

When programmed to any mode except digio.TRIG_BYPASS, the output state of the I/O line is 
controlled by the trigger logic, and the user-specified output state of the line is ignored. 
Use of either digio.TRIG_SYNCHRONOUSA or digio.TRIG_SYNCHRONOUSM is preferred over 
digio.TRIG_SYNCHRONOUS, because digio.TRIG_SYNCHRONOUS is provided for compatibility 
with the digital I/O and TSP-Link triggering on other Keithley Instruments products. 
To control the line state, set the mode to digio.TRIG_BYPASS and use the digio.writebit() 
and digio.writeport() commands. 

 

Example 
 

digio.trigger[4].mode = 2 Sets the trigger mode for I/O line 4 to 
digio.TRIG_RISING. 

 

Also see 

digio.trigger[N].clear() (on page 7-54) 
digio.trigger[N].reset() (on page 7-58) 
digio.writebit() (on page 7-61) 
digio.writeport() (on page 7-62) 
Scanning and triggering (on page 3-1) 

 

 
a 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-57 

 

digio.trigger[N].overrun 
This attribute returns the event detector overrun status. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Instrument reset 
Digital I/O trigger N clear 
Digital I/O trigger N reset 
Recall setup 

Not saved Not applicable 

Usage 

overrun = digio.trigger[N].overrun 
 

overrun Trigger overrun state (true or false) 
N Digital I/O trigger line (1 to 14) 

 

Details 

If this is true, an event was ignored because the event detector was already in the detected state 
when the event occurred. 
This is an indication of the state of the event detector built into the line itself. It does not indicate if an 
overrun occurred in any other part of the trigger model or in any other detector that is monitoring the 
event. 

 

Example 
 

overrun = digio.trigger[1].overrun 
print(overrun) 

If there is no trigger overrun, the following 
text is output: 
false 

Also see 

digio.trigger[N].clear() (on page 7-54) 
digio.trigger[N].reset() (on page 7-58) 

 

digio.trigger[N].pulsewidth 
This attribute describes the length of time that the trigger line is asserted for output triggers. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Digital I/O trigger N reset 
Recall setup 

Create configuration script  10e-6 (10 µs) 

 

Usage 

width = digio.trigger[N].pulsewidth 
digio.trigger[N].pulsewidth = width 
 

width The pulse width (seconds) 
N Digital I/O trigger line (1 to 14) 

 

Details 

Setting the pulse width to zero (0) seconds asserts the trigger indefinitely. To release the trigger line, 
use digio.trigger[N].release(). 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-58 707B-901-01 Rev. B / January 2015 

 

Example 
 

digio.trigger[4].pulsewidth = 20e-6 Sets the pulse width for trigger line 4 to 
20 μs. 

 

Also see 

digio.trigger[N].assert() (on page 7-53) 
digio.trigger[N].reset() (on page 7-58) 
digio.trigger[N].release() (on page 7-58) 

 
 

digio.trigger[N].release() 
This functionreleases an indefinite length or latched trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

digio.trigger[N].release() 
 

N Digital I/O trigger line (1 to 14) 
 

Details 

Releases a trigger that was asserted with an indefinite pulsewidth time. It also releases a trigger that 
was latched in response to receiving a synchronous mode trigger. Only the specified trigger line is 
affected. 

 

Example 
 

digio.trigger[4].release() Releases digital I/O trigger line 4. 

Also see 

digio.trigger[N].assert() (on page 7-53) 
digio.trigger[N].pulsewidth (on page 7-57) 

 

digio.trigger[N].reset() 
This function resets trigger values to their factory defaults. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

digio.trigger[N].reset() 
 

N Digital I/O trigger line (1 to 14) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-59 

 

Details 

This function resets the following attributes to factory default settings: 
• digio.trigger[N].mode 
• digio.trigger[N].pulsewidth 
• digio.trigger[N].stimulus 

It also clears digio.trigger[N].overrun. 
 

Example 
 

digio.trigger[3].mode = 2 
digio.trigger[3].pulsewidth = 50e-6 
digio.trigger[3].stimulus = digio.trigger[5].EVENT_ID 
print(digio.trigger[3].mode, digio.trigger[3].pulsewidth, 

digio.trigger[3].stimulus) 
digio.trigger[3].reset() 
print(digio.trigger[3].mode, digio.trigger[3].pulsewidth, 

digio.trigger[3].stimulus) 

Set the digital I/O trigger line 3 for a falling edge with a pulsewidth of 50 microseconds. 
Use digital I/O line 5 to trigger the event on line 3. 
Reset the line back to factory default values. 
Output before reset: 
2.0000000e+00        5.0000000e-05        5.0000000e+00 
Output after reset: 
0.0000000e+00        1.0000000e-05        0.0000000e+00 

Also see 

digio.trigger[N].mode (on page 7-55) 
digio.trigger[N].overrun (on page 7-57) 
digio.trigger[N].pulsewidth (on page 7-57) 
digio.trigger[N].stimulus (on page 7-59) 

 

digio.trigger[N].stimulus 
This attribute selects the event that causes a trigger to be asserted on the digital output line. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Digital I/O trigger N reset 
Save setup 

Create configuration script 0 

 
 

Usage 

triggerStimulus = digio.trigger[N].stimulus 
digio.trigger[N].stimulus = triggerStimulus 
 

triggerStimulus The event identifier for the triggering event. 

N Digital I/O trigger line (1 to 14). 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-60 707B-901-01 Rev. B / January 2015 

 

Details 

Set this attribute to zero (0) to disable the automatic trigger output. 
Do not use the stimulus attribute for generating output triggers under script control. Use 
digio.trigger[N].assert() instead. 
The trigger stimulus for a digital I/O line may be set to one of the existing trigger event IDs, described 
in the following table. 
Trigger event IDs 

Trigger event ID Description 

digio.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the 
configuration of the line) on the digital input line. 

display.trigger.EVENT_ID The trigger key on the front panel is pressed. 

trigger.EVENT_ID A *trg message on the active command interface. If 
GPIB is the active command interface, a GET 
message also generates this event. 

trigger.blender[N].EVENT_ID A combination of events has occurred. 
trigger.timer[N].EVENT_ID A delay expired. 

tsplink.trigger[N].EVENT_ID An edge (either rising, falling, or either based on the 
configuration of the line) on the TSP-Link trigger line. 

lan.trigger[N].EVENT_ID A LAN trigger event has occurred. 
scan.trigger.EVENT_SCAN_READY Scan ready event. 

scan.trigger.EVENT_SCAN_START Scan start event. 
scan.trigger.EVENT_CHANNEL_READY Channel ready event. 
scan.trigger.EVENT_SCAN_COMP Scan complete event. 
scan.trigger.EVENT_IDLE Idle event. 

 

Example 1 
 

digio.trigger[3].stimulus = 0 Clear the trigger 
stimulus of digital 
I/O line 3. 

 

Example 2 
 

digio.trigger[3].stimulus = scan.trigger.EVENT_CHANNEL_READY Set the trigger 
stimulus of digital 
I/O line 3 to be the 
channel ready 
event during a 
scan. 

 

Also see 

digio.trigger[N].assert() (on page 7-53) 
digio.trigger[N].clear() (on page 7-54) 
digio.trigger[N].reset() (on page 7-58) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-61 

 

digio.trigger[N].wait() 
This function waits for a trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

triggered = digio.trigger[N].wait(timeout) 
 

triggered The value true if a trigger is detected, or false if no triggers are detected during 
the timeout period 

N Digital I/O trigger line (1 to 14) 
timeout Timeout in seconds 

 

Details 

This function pauses for up to timeout seconds for an input trigger. If one or more trigger events are 
detected since the last time digio.trigger[N].wait() or digio.trigger[N].clear() was 
called, this function returns a value immediately. After waiting for a trigger with this function, the event 
detector is automatically reset and ready to detect the next trigger. This is true regardless of the 
number of events detected. 

Example 
 

triggered = digio.trigger[4].wait(3) 
print(triggered) 

Waits up to three seconds for a trigger to be 
detected on trigger line 4, then outputs the 
results. 
Output if no trigger is detected: 
false 
Output if a trigger is detected: 
true 

 

Also see 

digio.trigger[N].clear() (on page 7-54) 
 

digio.writebit() 
This function sets a digital I/O line high or low. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

digio.writebit(N, data) 
 

N Digital I/O trigger line (1 to 14) 

data The value to write to the bit: 
• 0 (low) 
• Non-zero (high) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-62 707B-901-01 Rev. B / January 2015 

 

Details 

If the output line is write-protected using the digio.writeprotect attribute, the command is 
ignored. 
The reset() function does not affect the present state of the digital I/O lines. 
Use the digio.writebit() and digio.writeport() commands to control the output state of 
the synchronization line when trigger operation is set to digio.TRIG_BYPASS. 
The data must be zero (0) to clear the bit. Any value other than zero (0) sets the bit. 

 

Example 
 

digio.writebit(4, 0) Sets digital I/O line 4 low (0). 
 

Also see 

digio.readbit() (on page 7-52) 
digio.readport() (on page 7-53) 
digio.trigger[N].mode (on page 7-55) 
digio.writeport() (on page 7-62) 
digio.writeprotect (on page 7-63) 

 

digio.writeport() 
This function writes to all digital I/O lines. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

digio.writeport(data) 
 

data Value to write to the port (0 to 16383) 
 

Details 

The binary representation of data indicates the output pattern to be written to the I/O port. For 
example, a data value of 170 has a binary equivalent of 00000010101010. Lines 2, 4, 6, and 8 are 
set high (1), and the other 10 lines are set low (0). 
Write-protected lines are not changed. 
The reset() function does not affect the present states of the digital I/O lines. 
Use the digio.writebit() and digio.writeport() commands to control the output state of 
the synchronization line when trigger operation is set to digio.TRIG_BYPASS. 

 

Example 
 

digio.writeport(255) Sets digital I/O Lines 1 through 8 high (binary 
00000011111111). 

 

Also see 

digio.readbit() (on page 7-52) 
digio.readport() (on page 7-53) 
digio.writebit() (on page 7-61) 
digio.writeprotect (on page 7-63) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-63 

 

digio.writeprotect 
This attribute contains the write-protect mask that protects bits from changes from the digio.writebit() and 
digio.writeport() functions. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 

Create configuration script  0 

Usage 

mask = digio.writeprotect 
digio.writeprotect = mask 
 

mask Sets the value that specifies the bit pattern for write-protect 
 

Details 

Bits that are set to one cause the corresponding line to be write-protected. 
The binary equivalent of mask indicates the mask to be set for the I/O port. For example, a mask 
value of 7 has a binary equivalent of 00000000000111. This mask write-protects lines 1, 2, and 3. 

 

Example 
 

digio.writeprotect = 15 Write-protects lines 1, 2, 3, and 4. 
 

Also see 

digio.writebit() (on page 7-61) 
digio.writeport() (on page 7-62) 

 

display.clear() 
This function clears all lines of the display. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.clear() 

Details 

This function switches to the user screen and then clears the display. 
The display.clear(), display.setcursor(), and display.settext() functions are 
overlapped commands. That is, the script does not wait for one of these commands to complete. 
These functions do not immediately update the display. For performance considerations, they update 
the physical display as soon as processing time becomes available. 

Also see 

display.setcursor() (on page 7-77) 
display.settext() (on page 7-79) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-64 707B-901-01 Rev. B / January 2015 

 

display.getannunciators() 
This function reads the annunciators (indicators) that are presently turned on. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

annunciators = display.getannunciators() 
 

annunciators The bitmasked value that shows which indicators are turned on 
 

Details 

This function returns a bitmasked value showing which indicators are turned on. The 16-bit binary 
equivalent of the returned value is the bitmask. The return value is a sum of set annunciators, based 
on the weighted value, as shown in the following table. 
 

Annunciator (indicator) bitmasked values and equivalent constants 

Indicator Bit Weighted 
value 

Equivalent constant 

FILT 1 1 display.ANNUNCIATOR_FILTER 
MATH 2 2 display.ANNUNCIATOR_MATH 
4W 3 4 display.ANNUNCIATOR_4_WIRE 
AUTO 4 8 display.ANNUNCIATOR_AUTO 
ARM 5 16 display.ANNUNCIATOR_ARM 
TRIG 6 32 display.ANNUNCIATOR_TRIGGER 
* (star) 7 64 display.ANNUNCIATOR_STAR 
SMPL 8 128 display.ANNUNCIATOR_SAMPLE 
EDIT 9 256 display.ANNUNCIATOR_EDIT 
ERR 10 512 display.ANNUNCIATOR_ERROR 
REM 11 1024 display.ANNUNCIATOR_REMOTE 
TALK 12 2048 display.ANNUNCIATOR_TALK  
LSTN 13 4096 display.ANNUNCIATOR_LISTEN 
SRQ 14 8192 display.ANNUNCIATOR_SRQ 
REAR 15 16384 display.ANNUNCIATOR_REAR 
REL 16 32768 display.ANNUNCIATOR_REL 

 
 

Example 1 
 

testAnnunciators = display.getannunciators() 
print(testAnnunciators) 
 
rem = bit.bitand(testAnnunciators, 1024) 
if rem > 0 then 
   print("REM is on") 
else 
   print("REM is off") 
end 

REM indicator is turned on. 
Output: 
1.2800000e+03 
REM is on 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-65 

 

Example 2 
 

 
print(display.ANNUNCIATOR_EDIT) 
 
print(display.ANNUNCIATOR_TRIGGER) 
 
print(display.ANNUNCIATOR_AUTO) 

Output: 
2.5600000e+02 
 
3.2000000e+01 
 
8.0000000e+00 

 
 

Also see 

bit.bitand() (on page 7-9) 
 

display.getcursor() 
This function reads the present position of the cursor on the front panel display. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

row, column, style = display.getcursor() 
 

row The row where the cursor is: 1 (top row); 2 (bottom row) 

column The column where the cursor is: 
• If the cursor is in the top row: 1 to 20 
• If the cursor is in the bottom row: 1 to 32 

style Visibility of the cursor: 0 (invisible cursor); 1 (blinking cursor) 
 

Details 

This function switches the display to the user screen (the text set by display.settext()), and 
then returns values to indicate the cursor's row and column position and cursor style. 
Columns are numbered from left to right on the display. 

 

Example 1 
 

testRow, testColumn = display.getcursor() 
print(testRow, testColumn) 

This example reads the cursor position 
into local variables and prints them. 
Example output: 
1.0000000e+00     1.0000000e+00 

 

Example 2 
 

print(display.getcursor()) This example prints the cursor position 
directly. In this example, the cursor is in 
row 1 at column 3, with an invisible cursor: 
1.0000000e+00   3.0000000e+00   

0.0000000e+00 
 

Also see 

display.gettext() (on page 7-67) 
display.screen (on page 7-75) 
display.setcursor() (on page 7-77) 
display.settext() (on page 7-79) 

 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-66 707B-901-01 Rev. B / January 2015 

 

display.getlastkey() 
This function retrieves the key code for the last pressed key. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

keyCode = display.getlastkey() 
 

keyCode A returned value that represents the last front-panel key pressed; see Details for 
more information 

 

Details 

A history of the key code for the last pressed front-panel key is maintained by the instrument. When 
the instrument is turned on, or when it is transitioning from local to remote operation, the key code is 
set to 0 (display.KEY_NONE). 
Pressing the EXIT (LOCAL) key normally aborts a script. To use this function with the EXIT (LOCAL) 
key, you must set display.locallockout to display.LOCK. 

 

The table below lists the keyCode value for each front-panel action. 
Key codes 

Value Key list  Value Key list 

0 display.KEY_NONE  83 display.KEY_RUN 

66 display.KEY_DELETE  84 display.KEY_TRIG 

67 display.KEY_EXIT  86 display.KEY_STEP 

69 display.KEY_CLOSE  87 display.KEY_CHAN 

70 display.KEY_SLOT  90 display.KEY_INSERT 

72 display.KEY_DISPLAY  91 display.KEY_MENU 

74 display.KEY_ENTER  93 display.KEY_OPEN 

76 display.KEY_LOAD  94 display.KEY_PATT 

77 display.KEY_SCAN  97 display.WHEEL_ENTER 

79 display.KEY_OPENALL  107 display.WHEEL_LEFT 

80 display.KEY_CONFIG  114 display.WHEEL_RIGHT 
 
 

When using this function, use built-in constants, such as display.KEY_STEP, rather than the 
numeric value, such as 86. This allows for better forward compatibility with firmware revisions. 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-67 

 

Example 
 

key = display.getlastkey() 
print(key) 

On the front panel, press the MENU key and 
then send the code shown here. This retrieves 
the key code for the last pressed key. 
Output: 
6.8000000e+01 

Also see 

display.locallockout (on page 7-72) 
display.sendkey() (on page 7-76) 

 

display.gettext() 
This function reads the text displayed on the instrument front panel. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

text = display.gettext() 
text = display.gettext(embellished) 
text = display.gettext(embellished, row) 
text = display.gettext(embellished, row, columnStart) 
text = display.gettext(embellished, row, columnStart, columnEnd) 
 

text The returned value, which contains the text that is presently displayed 

embellished Indicates type of returned text: false (simple text); true (text with embedded 
character codes) 

row Selects the row from which to read the text: 1 (row 1); 2 (row 2). If row is not 
included, both rows of text are read 

columnStart Selects the first column from which to read text; for row 1, the valid column numbers 
are 1 to 20; for row 2, the valid column numbers are 1 to 32; if nothing is selected, 1 
is used 

columnEnd Selects the last column from which to read text; for row 1, the valid column numbers 
are 1 to 20; for row 2, the valid column numbers are 1 to 32; the default is 20 for row 
1, and 32 for row 2 

 

Details 

Using the command without any parameters returns both lines of the display. 
The $N character code is included in the returned value to show where the top line ends and the 
bottom line begins. This is not affected by the value of embellished. 
When embellished is set to true, all other character codes are returned along with the message. 
When embellished is set to false, only the message and the $N character code is returned. For 
information on the embedded character codes, see display.settext() (on page 7-79). 
The display is not switched to the user screen (the screen set using display.settext()). Text will 
be read from the active screen. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-68 707B-901-01 Rev. B / January 2015 

 

Example 1 
 

display.clear() 
display.setcursor(1, 1) 
display.settext("ABCDEFGHIJ$DKLMNOPQRST") 
display.setcursor(2, 1) 
display.settext("abcdefghijklm$Bnopqrstuvwxyz$F123456") 
print(display.gettext()) 
print(display.gettext(true)) 
print(display.gettext(false, 2)) 
print(display.gettext(true, 2, 9)) 
print(display.gettext(false, 2, 9, 10)) 

 
This example shows how to retrieve the display text in multiple ways. The output is: 
 
ABCDEFGHIJKLMNOPQRST$Nabcdefghijklmnopqrstuvwxyz123456 
$RABCDEFGHIJ$DKLMNOPQRST$N$Rabcdefghijklm$Bnopqrstuvwxyz$F123456 
abcdefghijklmnopqrstuvwxyz123456 
$Rijklm$Bnopqrstuvwxyz$F123456 
ij 

 

Example 2 
 

display.clear() 
display.settext("User Screen") 
text = display.gettext() 
print(text) 

This outputs all text in both lines of the display: 
User Screen       $N 
This indicates that the message “User Screen” is on the top line. The bottom line is blank. 

 

Also see 

display.clear() (on page 7-63) 
display.getcursor() (on page 7-65) 
display.setcursor() (on page 7-77) 
display.settext() (on page 7-79) 

 

display.inputvalue() 
This function displays a formatted input field on the instrument display that the operator can edit. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.inputvalue(format) 
display.inputvalue(format, default) 
display.inputvalue(format, default, minimum) 
display.inputvalue(format, default, minimum, maximum) 
 

format A string that defines how the input field is formatted; see Details for more information 
default The default value for the input value 
minimum The minimum input value 
maximum The maximum input value 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-69 

 

Details 

The format parameter uses zeros (0), the decimal point, polarity sign, and exponents to define how 
the input field is formatted. The format parameter can include the options shown in the following 
table. 
 

Option Description Examples 

E Include the E to display the value exponentially 0.00000e+0 
+ Allows operators to enter positive or negative values; if the 

"+" sign is not included, the operator cannot enter a 
negative value 

+0.00 

0 Defines the digit positions for the value; you can use up to 
six zeros (0) 

+00.0000e+00 

. Include to have a decimal point appear in the value +0.00 
 

The default parameter is the value shown when the value is first displayed. 
The minimum and maximum parameters can be used to limit the values that can be entered. When + 
is not selected for format, the minimum limit must be more than or equal to zero (0). When limits are 
used, you cannot enter values above or below these limits. 
The input value is limited to ±1e37. 
Before calling display.inputvalue(), you should send a message prompt to the operator using 
display.prompt(). Make sure to position the cursor where the edit field should appear. 

 

After this command is sent, script execution pauses until you enter a value and press the ENTER key. 
For positive and negative entry (plus sign (+) used for the value field and/or the exponent field), 
polarity of a nonzero value or exponent can be toggled by positioning the cursor on the polarity sign 
and turning the navigation wheel . Polarity will also toggle when using the navigation wheel  to 
decrease or increase the value or exponent past zero. A zero (0) value or exponent (for example, 
+00) is always positive and cannot be toggled to negative polarity. 
After executing this command and pressing the EXIT (LOCAL) key, the function returns nil. 

 

Example 
 

display.clear() 
display.settext("Enter value between$N  -0.10 and 2.00:  ") 
value = display.inputvalue("+0.00", 0.5, -0.1, 2.0) 
print("Value entered = ", value) 

 
Displays an editable field (+0.50) for operator input. The valid input range is -0.10 to +2.00, with a default of 
0.50. 
 
Output: 
Value entered =    1.3500000e+00 

 

Also see 

display.prompt() (on page 7-74) 
display.setcursor() (on page 7-77) 
display.settext() (on page 7-79) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-70 707B-901-01 Rev. B / January 2015 

 

display.loadmenu.add() 
This function adds an entry to the USER TESTS menu, which can be accessed by pressing the LOAD key on the 
instrument front panel. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.loadmenu.add(displayName, code) 
display.loadmenu.add(displayName, code, memory) 
 

displayName The name that is added to the USER TESTS menu 

code The code that is run from the USER TESTS menu 
memory Determines if code is saved to nonvolatile memory: 

0 or display.DONT_SAVE: Does not save the code to nonvolatile memory 
1 or display.SAVE: Saves the code to nonvolatile memory (default) 

 

Details 

After adding code to the load menu, you can run it from the front panel by pressing the LOAD key, 
then selecting USER to select from the available code to load. Pressing the RUN key will then run the 
script. 
You can add items in any order. They are always displayed in alphabetic order when the menu is 
selected. 
Any Lua code can be can be included in the code parameter. If memory is set to display.SAVE, 
the entry (name and code) is saved in nonvolatile memory. Scripts, functions, and variables used in 
the code are not saved by display.SAVE. Functions and variables need to be saved with the code. 
If the code is not saved in nonvolatile memory, it will be lost when the Models 707B and 708B is 
turned off. See Example 2 below. 

 

If you do not make a selection for memory, the code is automatically saved to nonvolatile memory. 
 

You can create a script that defines several functions, and then use the 
display.loadmenu.add() command to add items that call those individual functions. This allows 
the operator to run tests from the front panel. 

 

Example 1 
 

display.loadmenu.add("Test9", "Test9()") Assume a user script named "Test9" has 
been loaded into the run-time environment. 
Adds the menu entry to the User menu to run 
the script after loading. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-71 

 

Example 2 
 

display.loadmenu.add( 
   "Test", "DUT1() beeper.beep(2, 500)", 

display.SAVE) 

Assume a script with a function named 
“DUT1” has already been loaded into the 
instrument, and the script has NOT been 
saved in nonvolatile memory. 
Now assume you want to add a test named 
“Test” to the USER TESTS menu. You want 
the test to run the function named “DUT1” 
and sound the beeper. This example adds 
“Test” to the menu, defines the code, and 
then saves the displayName and code in 
nonvolatile memory. 
When “Test” is run from the front panel USER 
TESTS menu, the function named “DUT1” 
executes and the beeper beeps for two 
seconds. 
Now assume you turn off instrument power. 
Because the script was not saved in 
nonvolatile memory, the function named 
“DUT1” is lost when you turn the instrument 
on. When “Test” is again run from the front 
panel, an error is generated because DUT1 
no longer exists in the instrument as a 
function. 

 

Example 3 
 

display.loadmenu.add("Part1", 
"testpart([[Part1]], 5.0)", display.SAVE) 

Adds an entry called “Part1” to the front panel 
“USER TESTS” load menu for the code 
testpart([[Part1]], 5.0), and saves it 
in nonvolatile memory. 

 

Also see 

display.loadmenu.delete() (on page 7-72) 
 
 

display.loadmenu.catalog() 
This function creates an iterator for the user menu items accessed using the LOAD key on the instrument front 
panel. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

for displayName in display.loadmenu.catalog() do body end 
for displayName, code in display.loadmenu.catalog() do body end 
 

displayName The name displayed in the menu 
code The code associated with the displayName 
body The body of the code to process the entries in the loop 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-72 707B-901-01 Rev. B / January 2015 

 

Details 

Each time through the loop, displayName and code will take on the values in the USER TESTS 
menu. 
The instrument goes through the list in random order. 

 

Example 
 

for displayName, code in 
display.loadmenu.catalog() do 

   print(displayName, code) 
end 

Output: 
Test DUT1() beeper.beep(2, 500) 
Part1 testpart([[Part1]], 5.0) 
Test9 Test9() 

 

Also see 

display.loadmenu.add() (on page 7-70) 
display.loadmenu.delete() (on page 7-72) 

 

display.loadmenu.delete() 
This function removes an entry from the USER TESTS menu, which can be accessed using the LOAD key on the 
instrument front panel. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.loadmenu.delete(displayName) 
 

displayName The name to be deleted from the USER TESTS menu 
 

Details 

If you delete an entry from the USER TESTS menu, you can no longer run it by pressing the LOAD 
key. 

 

Example 
 

display.loadmenu.delete("Test9") 
for displayName, code in 

display.loadmenu.catalog() do 
   print(displayName, code) 
end 

Deletes the entry named "Test9" 
Output: 
Test   DUT1() beeper.beep(2, 500) 
Part1   testpart([[Part1]], 5.0)    

 

Also see 

display.loadmenu.add() (on page 7-70) 
display.loadmenu.catalog() (on page 7-71) 

 

display.locallockout 
This attribute describes whether or not the EXIT (LOCAL) key on the instrument front panel is enabled. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Power cycle Not saved 0 (display.UNLOCK) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-73 

 

Usage 

lockout = display.locallockout 
display.locallockout = lockout 
  

lockout 0 or display.UNLOCK: Unlocks EXIT (LOCAL) key 
1 or display.LOCK: Locks out EXIT (LOCAL) key 

 

Details 

Set display.locallockout to display.LOCK to prevent the user from interrupting remote 
operation by pressing the EXIT (LOCAL) key. 
Set this attribute to display.UNLOCK to allow the EXIT (LOCAL) key to interrupt script or remote 
operation. 

 

Example 
 

display.locallockout = display.LOCK Disables the front-panel EXIT (LOCAL) key. 
 

Also see 

None 
 

display.menu() 
This function presents a menu on the front panel display. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

selection = display.menu(name, items) 
 

selection Name of the variable that holds the selected menu item 
name Menu name to display on the top line 
items Menu items to display on the bottom line 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-74 707B-901-01 Rev. B / January 2015 

 

Details 

The menu consists of the menu name string on the top line, and a selectable list of items on the 
bottom line. The menu items must be a single string with each item separated by whitespace. The 
name for the top line is limited to 20 characters. 
After sending this command, script execution pauses for the operator to select a menu item. An item 
is selected by rotating the navigation wheel  to place the blinking cursor on the item, and then 
pressing the navigation wheel  (or the ENTER key). When an item is selected, the text of that 
selection is returned. 
Pressing the EXIT (LOCAL) key will not abort the script while the menu is displayed, but it will return 
nil. The script can be aborted by calling the exit function when nil is returned. 

Example 
 

selection = display.menu("Menu", "Test1 Test2 Test3") 
print(selection) 

Displays a menu with three 
menu items. If the second menu 
item is selected, selection is 
given the value Test2. 
Output: 
Test2 

Also see 

None 
 

display.prompt() 
This function prompts the user to enter a parameter from the front panel of the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.prompt(format, units, help) 
display.prompt(format, units, help, default) 
display.prompt(format, units, help, default, minimum) 
display.prompt(format, units, help, default, minimum, maximum) 
 

format A string that defines how the input field is formatted; see Details for more information 
units Set the units text string for the top line (eight characters maximum); this indicates the units (for 

example, "V" or "A") for the value 
help Text string to display on the bottom line (32 characters maximum) 
default The value that is shown when the value is first displayed 
minimum The minimum input value that can be entered 
maximum The maximum input value that can be entered (must be more than minimum) 

 

Details 

This function creates an editable input field at the present cursor position, and an input prompt 
message on the bottom line. Example of a displayed input field and prompt: 
0.00V 
Input 0 to +2V 
The format parameter uses zeros (0), the decimal point, polarity sign, and exponents to define how 
the input field is formatted. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-75 

 

The format parameter can include the options shown in the following table. 
 

Option Description Examples 

E Include the E to display the value exponentially. Include a 
plus sign (+) for positive/negative exponent entry. Do not 
include the plus sign (+) to prevent negative value entry. 0 
defines the digit positions for the exponent. 

 
0.00000E+0 

+ Allows operators to enter positive or negative values. If 
the plus sign (+) is not included, the operator cannot enter 
a negative value. 

+0.00 

0 Defines the digit positions for the value. You can use up to 
six zeros (0). 

+00.0000E+00 

. The decimal point where needed for the value. +0.00 
 

The minimum and maximum parameters can be used to limit the values that can be entered. When a 
plus sign (+) is not selected for format, the minimum limit must be greater than or equal to zero (0). 
When limits are used, the operator cannot enter values above or below these limits. 
The input value is limited to ±1e37. 
After sending this command, script execution pauses for the operator to enter a value and press 
ENTER. 
For positive and negative entry (plus sign (+) used for the value field and the exponent field), polarity 
of a nonzero value or exponent can be toggled by positioning the cursor on the polarity sign and 
turning the navigation wheel . Polarity will also toggle when using the navigation wheel  to 
decrease or increase the value or exponent past zero. A zero value or exponent (for example, +00) is 
always positive and cannot be toggled to negative polarity. 
After executing this command and pressing the EXIT (LOCAL) key, the value returns nil. 

 

Example 
 

value = display.prompt("0.00", "V", "Input 0 to +2V", 0.5, 0, 2) 
print(value) 

The above command prompts the operator to enter a voltage value. The valid input range is 0 to +2.00, with a 
default of 0.50: 
0.50V 
Input 0 to +2V 
 
If the operator enters 0.70, the output is: 
7.0000000e-01 

 

Also see 

display.inputvalue() (on page 7-68) 
 

display.screen 
This attribute contains the selected display screen. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset Create configuration script display.MAIN 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-76 707B-901-01 Rev. B / January 2015 

 

Usage 

displayID = display.screen 
display.screen = displayID 
 

displayID One of the following values: 
• 1 or display.MAIN: Displays the main screen 
• 2 or display.USER: Displays the user screen. 

 

Details 

Setting this attribute selects the display screen for the front panel. This performs the same action as 
pressing the DISPLAY key on the front panel. The text for the display screen is set by 
display.settext(). 
Read this attribute to determine which of the available display screens was last selected. 

 

This does not support the CLOSED CHANNELS option that is available from the DISPLAY key. 

Example 
 

display.screen = display.USER Selects the user display. 
 

Also see 

display.settext() (on page 7-79) 
 

display.sendkey() 
This function sends a code that simulates the action of a front panel control. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.sendkey(keyCode) 
 

keyCode A parameter that specifies the key press to simulate; see Details for more 
information 

 

Details 

This command simulates the pressing of a front panel key or navigation wheel, or the turning the 
navigation wheel one click to the left or right. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-77 

 

The table below lists the keyCode value for each front panel action. 
 

Key codes 

Value Key list  Value Key list 

0 display.KEY_NONE  83 display.KEY_RUN 
66 display.KEY_DELETE  84 display.KEY_TRIG 
67 display.KEY_EXIT  86 display.KEY_STEP 
69 display.KEY_CLOSE  87 display.KEY_CHAN 

70 display.KEY_SLOT  90 display.KEY_INSERT 
72 display.KEY_DISPLAY  91 display.KEY_MENU 

74 display.KEY_ENTER  93 display.KEY_OPEN 

76 display.KEY_LOAD  94 display.KEY_PATT 
77 display.KEY_SCAN  97 display.WHEEL_ENTER 

79 display.KEY_OPENALL  107 display.WHEEL_LEFT 

80 display.KEY_CONFIG  114 display.WHEEL_RIGHT 

When using this function, send built-in constants, such as display.KEY_STEP, rather than the 
numeric value, such as 86. This allows for better forward compatibility with firmware revisions. 

 

Example 
 

display.sendkey(display.KEY_RUN) Simulates pressing the RUN key. 
 

Also see 

None 
 

display.setcursor() 
This function sets the position of the cursor. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.setcursor(row, column) 
display.setcursor(row, column, style) 
 

row The row number for the cursor (1 or 2) 
column The active column position to set; row 1 has columns 1 to 20, row 2 has columns 1 

to 32 
style Set the cursor to invisible (0, default) or blinking (1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-78 707B-901-01 Rev. B / January 2015 

 

Details 

Sending this command selects the user screen and then moves the cursor to the given location. 
The display.clear(), display.setcursor(), and display.settext() functions are 
overlapped commands. That is, the script does not wait for one of these commands to complete. 
These functions do not immediately update the display. For performance considerations, they update 
the physical display as soon as processing time becomes available. 
An out-of-range parameter for row sets the cursor to row 2. An out-of-range parameter for column 
sets the cursor to column 20 for row 1, or 32 for row 2. 
An out-of-range parameter for style sets it to 0 (invisible). 
A blinking cursor is only visible when it is positioned over displayed text. It cannot be seen when 
positioned over a space character. 

 

Example 
 

display.clear() 
display.setcursor(1, 8) 
display.settext("Hello") 
display.setcursor(2, 14) 
display.settext("World") 

This example displays a message on the 
instrument front panel, approximately center. 
Note that the top line of text is larger than the 
bottom line of text. 
The front panel of the instrument displays "Hello" 
on the top line and "World" on the second line. 

 

Also see 

display.clear() (on page 7-63) 
display.getcursor() (on page 7-65) 
display.gettext() (on page 7-67) 
display.screen (on page 7-75) 
display.settext() (on page 7-79) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-79 

 

display.settext() 
This function displays text on the user screen. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.settext(text) 
 

text Text message to be displayed, with optional character codes 

Details 

This function selects the user display screen and displays the given text. 
After the instrument is turned on, the first time you use a display command to write to the display, the 
message "User Screen" is cleared. After the first write, you need to use display.clear() to clear 
the message. 
The display.clear(), display.setcursor(), and display.settext() functions are 
overlapped commands. That is, the script does not wait for one of these commands to complete. 
These functions do not immediately update the display. For performance considerations, they update 
the physical display as soon as processing time becomes available. 
The text starts at the present cursor position. After the text is displayed, the cursor is after the last 
character in the display message. 
Top line text does not wrap to the bottom line of the display automatically. Any text that does not fit on 
the current line is truncated. If the text is truncated, the cursor remains at the end of the line. 
The text remains on the display until replaced or cleared. 

 

The character codes described in the following table can be also be included in the text string. 
 
Display character codes 

Character Code Description 

$N Newline, starts text on the next line; if the cursor is already on line 2, text will be ignored 
after the $N is received 

$R Sets text to normal intensity, nonblinking 
$B Sets text to blink 
$D Sets text to dim intensity 
$F Sets the text to background blink 
$$ Escape sequence to display a single dollar symbol ($) 

 

Example 
 

display.clear() 
display.settext("Normal $BBlinking$N") 
display.settext("$DDim $FBackgroundBlink$R $$$$ 2 dollars") 

This example sets the display to: 
Normal Blinking 
Dim BackgroundBlink $$ 2 dollars 
with the named effect on each word. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-80 707B-901-01 Rev. B / January 2015 

 

Also see 

display.clear() (on page 7-63) 
display.getcursor() (on page 7-65) 
display.gettext() (on page 7-67) 
display.screen (on page 7-75) 
display.setcursor() (on page 7-77) 

 
 

display.trigger.clear() 
This function clears the front-panel trigger event detector. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

display.trigger.clear() 

Details 

The trigger event detector remembers if an event has been detected since the last 
display.trigger.wait() call. This function clears the trigger event detector and discards the 
previous history of TRIG key presses. 
This attribute also clears the display.trigger.overrun attribute. 

Also see 

display.trigger.overrun 
display.trigger.wait() 

 

display.trigger.EVENT_ID 
This constant is the event ID of the event generated when the front-panel TRIG key is pressed. 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    

Usage 

eventID = display.trigger.EVENT_ID 
 

eventID The trigger event number 
 

Details 

Set the stimulus of any trigger event detector to the value of this constant to have it respond to front-
panel trigger key events. 

 

Example 
 

scan.trigger.channel.stimulus = display.trigger.EVENT_ID 

Have the channel action of the trigger model be paced by a user pressing the front-panel TRIG key. 
 

Also see 

scan.trigger.channel.stimulus (on page 7-153) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-81 

 

display.waitkey() 
This function captures the key code value for the next front-panel action. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

keyCode = display.waitkey() 
 

keyCode See Details for more information 
 

Details 

After you send this function, script execution pauses until a front-panel action (for example, pressing 
a key or the navigation wheel , or turning the navigation wheel ). After the action, the value of the 
key (or action) is returned. 
If the EXIT (LOCAL) key is pressed while this function is waiting for a front-panel action, the script is 
not aborted. 
A typical use for this function is to prompt the user to press the EXIT (LOCAL) key to abort the script 
or press any other key to continue. For example, if the keyCode value 75 is returned (the EXIT 
(LOCAL) key was pressed), the exit() function can be called to abort the script. 
The table below lists the keyCode value for each front panel action. 
Key codes 

Value Key (or action)  Value Key (or action) 

0 display.KEY_NONE  82 display.KEY_ENTER 
65 display.KEY_RANGEUP  85 display.KEY_RECALL 
68 display.KEY_MENU  86 display.KEY_MEASA 
69 display.KEY_MODEA  86 display.KEY_DIGITSA 
70 display.KEY_RELA  88 display.KEY_OUTPUTA 
71 display.KEY_RUN  92 display.KEY_TRIG 
72 display.KEY_DISPLAY  93 display.KEY_LIMITA 
73 display.KEY_AUTO  94 display.KEY_SPEEDA 
75 display.KEY_EXIT  95 display.KEY_LOAD 
77 display.KEY_FILTERA  97 display.WHEEL_ENTER 
78 display.KEY_STORE  103 display.KEY_RIGHT 
79 display.KEY_SRCA  104 display.KEY_LEFT 
80 display.KEY_CONFIG  107 display.WHEEL_LEFT 
81 display.KEY_RANGEDOWN  114 display.WHEEL_RIGHT 

When using this function, use built-in constants, such as display.KEY_RIGHT, rather than the 
numeric value, such as 103. This allows for better forward compatibility with firmware revisions. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-82 707B-901-01 Rev. B / January 2015 

 

Example 
 

key = display.waitkey() 
print(key) 

Pause script execution until the operator presses 
a key or the navigation wheel, or rotates the 
navigation wheel. 
If the output is: 
8.60000e+01 
It indicates that the MEAS(A) key was pressed. 

 

Also see 

Capturing key-press codes 
display.getlastkey() (on page 7-66) 
display.sendkey() (on page 7-76) 
display.settext() (on page 7-79) 

 

errorqueue.clear() 
This function clears all entries out of the error queue. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

errorqueue.clear() 

Details 

See the Error queue topic for additional information about the error queue. 

Also see 

errorqueue.count (on page 7-83) 
errorqueue.next() (on page 7-83) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-83 

 

errorqueue.count 
This attribute gets the number of entries in the error queue. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Power cycle 
Clearing error queue 
Reading error messages 

Not applicable Not applicable 

Usage 

count = errorqueue.count 
 

count The number of entries in the error queue 

Example 
 

count = errorqueue.count 
print(count) 

Returns the number of entries in the error 
queue. 
 
The output below indicates that there are 
four entries in the error queue: 
4.0000000e+00 

Also see 

errorqueue.clear() (on page 7-82) 
errorqueue.next() (on page 7-83) 

 

errorqueue.next() 
This function reads the oldest entry from the error queue and removes it from the queue. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    
 

Usage 

errorCode, message, severity, errorNode = errorqueue.next() 
 

errorCode The error code number for the entry 
message The message that describes the error code 
severity The severity level (0, 10, 20, 30, or 40); see Details for more information 
errorNode The node number where the error originated 

 

Details 

Entries are stored in a first-in, first-out (FIFO) queue. This functions reads the oldest entry and 
removes it from the queue. 
Error codes and messages are listed in the Error summary list. 
If there are no entries in the queue, code 0, "Queue is Empty" is returned. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-84 707B-901-01 Rev. B / January 2015 

 

Returned severity levels are described in the following table. 
Severity level descriptions 

Number Level Description 
0  Informational Indicates that there are no entries in the queue. 
10  Informational Indicates a status message or minor error. 

20 Recoverable Indicates possible invalid user input; operation continues but action 
should be taken to correct the error. 

30 Serious Indicates a serious error that may require technical assistance, such as 
corrupted data. 

40 Fatal Instrument is not operational. 

 
 

In an expanded system, each TSP-Link enabled instrument is assigned a node number. The variable 
errorNode stores the node number where the error originated. 

 

Example 
 

errorcode, message = errorqueue.next() 
print(errorcode, message) 

Reads the oldest entry in the error queue. The 
output below indicates that the queue is empty. 
Output: 
0.0000000e+00 Queue Is Empty 

 

Also see 

errorqueue.clear() (on page 7-82) 
errorqueue.count (on page 7-83) 

 
 

eventlog.all() 
This function returns all entries from the event log as a single string and removes them from the event log. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

logString = eventlog.all() 
 

logString A listing of all event log entries 
 

Details 

This function returns all events in the event log. Logged items are shown from oldest to newest. The 
response is a string that has the messages delimited with a new line character. 
This function also clears the event log. 
If there are no entries in the event log, this function returns the value nil. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-85 

 

Example 
 

print(eventlog.all()) 

Get and print all entries from the event log and remove the entries from the log. 
Output: 
17:26:35.690 10 Oct 2007, LAN0, 192.168.1.102, LXI, 0, 1192037132, 
   1192037155.733269000, 0, 0x0 
17:26:39.009 10 Oct 2007, LAN5, 192.168.1.102, LXI, 0, 1192037133, 
   1192037159.052777000, 0, 0x0 

 

Also see 

eventlog.clear() (on page 7-85) 
eventlog.count (on page 7-86) 
eventlog.enable (on page 7-86) 
eventlog.next() (on page 7-87) 
eventlog.overwritemethod (on page 7-88) 

 
 

eventlog.clear() 
This function clears the event log. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

eventlog.clear() 

Details 

This command removes all unread messages from the event log. 
 

Also see 

eventlog.all() (on page 7-84) 
eventlog.count (on page 7-86) 
eventlog.enable (on page 7-86) 
eventlog.next() (on page 7-87) 
eventlog.overwritemethod (on page 7-88) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-86 707B-901-01 Rev. B / January 2015 

 

eventlog.count 
This attribute returns the number of unread events in the event log. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Instrument reset 
Clearing event log 
Reading event log 

Not applicable Not applicable 

Usage 

N = eventlog.count 
 

N The number of events in the event log 

Example 
 

print(eventlog.count) Displays the present number of events in the 
instrument event log. 
Output looks similar to: 
3.0000000e+00 

Also see 

eventlog.all() (on page 7-84) 
eventlog.clear() (on page 7-85) 
eventlog.enable (on page 7-86) 
eventlog.next() (on page 7-87) 
eventlog.overwritemethod (on page 7-88) 

 

eventlog.enable 
This attribute enables or disables the event log. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset Create configuration script eventlog.ENABLE 

Usage 

status = eventlog.enable 
eventlog.enable = status 
 

status The enable status of the event log: 
1 or eventlog.ENABLE: Event log enable 
0 or eventlog.DISABLE: Event log disable 

 

Details 

When the event log is disabled (eventlog.DISABLE or 0), no new events are added to the event 
log. You can, however, read and remove existing events. 
When the event log is enabled, new events are logged. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-87 

 

Example 
 

print(eventlog.enable) 
eventlog.enable = eventlog.DISABLE 
print(eventlog.enable) 

Displays the present status of the Model 
707B or 708B event log. 
 
Output: 
1.0000000e+00 
0.0000000e+00 

 

Also see 

eventlog.all() (on page 7-84) 
eventlog.clear() (on page 7-85) 
eventlog.count (on page 7-86) 
eventlog.next() (on page 7-87) 
eventlog.overwritemethod (on page 7-88) 

 
 

eventlog.next() 
This function returns the oldest unread event message from the event log and removes it from the event log. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

logString = eventlog.next() 
 

logString The next log entry 
 

Details 

Returns the next entry from the event log and removes it from the log. 
If there are no entries in the event log, returns the value nil. 

 

Example 1 
 

print(eventlog.next()) 

Get the oldest message in the event log and remove that entry from the log. 
Output: 
17:28:22.085 10 Oct 2009, LAN2, 192.168.1.102, LXI, 0, 1192037134, <no time>, 0, 

0x0 
 

Example 2 
 

print(eventlog.next()) 

If you send this command when there is nothing in the event log, you will get the following output: 
nil 

 

Also see 

eventlog.all() (on page 7-84) 
eventlog.clear() (on page 7-85) 
eventlog.count (on page 7-86) 
eventlog.enable (on page 7-86) 
eventlog.overwritemethod (on page 7-88) 

 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-88 707B-901-01 Rev. B / January 2015 

 

eventlog.overwritemethod 
This attribute controls how the event log processes events if the event log is full. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 

Create configuration script  1 
(eventlog.DISCARD_OLDEST) 

 

Usage 

method = eventlog.overwritemethod 
eventlog.overwritemethod = method 
 

method Set to one of the following values: 
• 0 or eventlog.DISCARD_NEWEST: New entries are not logged 
• 1 or eventlog.DISCARD_OLDEST: Old entries are deleted as new events 

are logged 
 

Details 

When this attribute is set to eventlog.DISCARD_NEWEST, new entries are not logged. 
When this attribute is set to eventlog.DISCARD_OLDEST, the oldest entry is discarded when a new 
entry is added. 

 

Example 
 

eventlog.overwritemethod = 0 When the log is full, the event log will ignore 
new entries. 

 

Also see 

eventlog.all() (on page 7-84) 
eventlog.clear() (on page 7-85) 
eventlog.count (on page 7-86) 
eventlog.enable (on page 7-86) 
eventlog.next() (on page 7-87) 

 

exit() 
This function stops a script that is presently running. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

exit() 

Details 

Terminates script execution when called from a script that is being executed. 
This command does not wait for overlapped commands to complete before terminating script 
execution. If overlapped commands are required to finish, use the waitcomplete() function before 
calling exit(). 

Also see 

waitcomplete() (on page 7-242) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-89 

 

format.asciiprecision 
This attribute sets the precision (number of digits) for all numbers returned in the ASCII format. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Instrument reset 
Recall setup 

Create configuration script  10 

Usage 

precision = format.asciiprecision 
format.asciiprecision = precision 
 

precision A number representing the number of digits to be printed for numbers printed with 
the print(), printbuffer(), and printnumber() functions; must be a 
number between 1 and 16 

Details 

This attribute specifies the precision (number of digits) for numeric data printed with the print(), 
printbuffer(), and printnumber() functions. The format.asciiprecision attribute is only 
used with the ASCII format. The precision value must be a number from 0 to 16. 
Note that the precision is the number of significant digits printed. There is always one digit to the left 
of the decimal point; be sure to include this digit when setting the precision. 

 

Example 
 

format.asciiprecision = 10 
x = 2.54 
printnumber(x) 
format.asciiprecision = 3 
printnumber(x) 

Output: 
2.54000000000e+00 
 
2.54e+00 

Also see 

format.byteorder (on page 7-89) 
format.data (on page 7-90) 
print() (on page 7-131) 
printbuffer() (on page 7-132) 
printnumber() (on page 7-134) 

 

format.byteorder 
This attribute sets the binary byte order for the data that is printed using the printnumber() and 
printbuffer() functions. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 

Create configuration script 
Save setup 

format.LITTLEENDIAN 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-90 707B-901-01 Rev. B / January 2015 

 

Usage 

order = format.byteorder 
format.byteorder = order 
 

order Byte order value as follows: 
• Most significant byte first: 0, format.NORMAL, format.NETWORK, or 

format.BIGENDIAN 
• Least significant byte first: 1, format.SWAPPED or format.LITTLEENDIAN 

 

Details 

This attribute selects the byte order in which data is written when you are printing data values with the 
printnumber() and printbuffer() functions. The byte order attribute is only used with the 
format.SREAL, format.REAL, format.REAL32, and format.REAL64 data formats. 
format.NORMAL, format.BIGENDIAN, and format.NETWORK select the same byte order. 
format.SWAPPED and format.LITTLEENDIAN select the same byte order. Selecting which to use 
is a matter of preference. 
Select the format.SWAPPED or format.LITTLEENDIAN byte order when sending data to a 
computer with a Microsoft Windows operating system. 

 
 

Example 
 

x = 1.23 
format.data = format.REAL32 
format.byteorder = format.LITTLEENDIAN 
printnumber(x) 
format.byteorder = format.BIGENDIAN 
printnumber(x) 

Output depends on the terminal program 
you use, but will look something like: 
#0¤p?? 
#0??p¤ 

Also see 

format.asciiprecision (on page 7-89) 
format.data (on page 7-90) 
printbuffer() (on page 7-132) 
printnumber() (on page 7-134) 

 

format.data 
This attribute sets the data format for data that is printed using the printnumber() and printbuffer() 
functions. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Instrument reset 
Recall setup 

Create configuration script 1 (format.ASCII) 

Usage 

value = format.data 
format.data = value 
 

value The format to use for data, set to one of the following values: 
• ASCII format: 1 or format.ASCII 
• Single-precision IEEE Std 754 binary format: 2, format.SREAL, or format.REAL32 
• Double-precision IEEE Std 754 binary format: 3, format.REAL, format.REAL64, or 

format.DREAL 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-91 

 

Details 

The precision of numeric values can be controlled with the format.asciiprecision attribute. The 
byte order of format.SREAL, format.REAL, format.REAL32, and format.REAL64 can be 
selected with the format.byteorder attribute. 
REAL32 and SREAL select the same single precision format. REAL and REAL64 select the same 
double precision format. They are alternative identifiers. Selecting which to use is a matter of 
preference. 
The IEEE Std 754 binary formats use four bytes for single-precision values and eight bytes for 
double-precision values. 
When data is written with any of the binary formats, the response message starts with #0 and ends 
with a new line. When data is written with the ASCII format, elements are separated with a comma 
and space. 

 

Binary formats are not intended to be interpreted by humans. 
 

Example 
 

format.asciiprecision = 10 
x = 3.14159265 
format.data = format.ASCII 
printnumber(x) 
format.data = format.REAL64 
printnumber(x) 

Output a number represented by x in ASCII 
using a precision of 10, then output the 
same number in binary using double 
precision format. 
Output: 
3.141592650e+00 
#0ñÔÈSû!   @ 

Also see 

format.asciiprecision (on page 7-89) 
format.byteorder (on page 7-89) 
printbuffer() (on page 7-132) 
printnumber() (on page 7-134) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-92 707B-901-01 Rev. B / January 2015 

 

gettimezone() 
This function retrieves the local time zone. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

timeZone = gettimezone() 
 

timeZone The local timezone of the instrument 

Details 

See settimezone() for additional details about the time zone format and a description of the fields. 
timeZone can be in either of the following formats: 

• If one parameter was used with settimezone(), the format used is: 
GMThh:mm:ss 

• If four parameters were used with settimezone(), the format used is: 
GMThh:mm:ssGMThh:mm:ss,Mmm.w.dw/hh:mm:ss,Mmm.w.dw/hh:mm:ss 

Example 
 

timezone = gettimezone() Reads the value of the local timezone. 

Also see 

settimezone() (on page 7-166) 
 

gpib.address 
This attribute contains the GPIB address. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Not applicable Nonvolatile memory 16 

Usage 

address = gpib.address 
gpib.address = address 
 

address The GPIB address of the instrument (1 to 30) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-93 

 

Details 

The address can be set to any address value from 1 to 30. However, the address must be unique in 
the system. It cannot conflict with an address that is assigned to another instrument or to the GPIB 
controller. 
A new GPIB address takes effect when the command to change it is processed. If there are response 
messages in the output queue when this command is processed, they must be read at the new 
address. 
If command messages are being queued (sent before this command has executed), the new settings 
may take effect in the middle of a subsequent command message, so care should be exercised when 
setting this attribute from the GPIB interface. 
You should allow ample time for the command to be processed before attempting to communicate 
with the instrument again. After sending this command, make sure to use the new address to 
communicate with the instrument. 
The reset() function does not affect the GPIB address. 

 

Example 
 

gpib.address = 26 
address = gpib.address 
print(address) 

Sets the GPIB address and reads the address. 
Output: 
2.60000000e+01 

Also see 

GPIB setup (on page 2-30) 
 

lan.applysettings() 
This function re-initializes the LAN interface with new settings. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.applysettings() 
 

Details 

Disconnects all existing LAN connections to the instrument and re-initializes the LAN with the present 
configuration settings. 
This function initiates a background operation. LAN configuration could be a lengthy operation. 
Although the function returns immediately, the LAN initialization continues to run in the background. 
Even though the LAN configuration settings may not have changed since the LAN was last 
connected, new settings may take effect due to the dynamic nature of dynamic host configuration 
protocol (DHCP) or dynamic link local addressing (DLLA) configuration. 
Re-initialization takes effect even if the configuration has not changed since the last time the 
instrument connected to the LAN. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-94 707B-901-01 Rev. B / January 2015 

 

Example 
 

lan.applysettings() Re-initialize the LAN interface with new settings. 

Also see 

None 
 

lan.config.dns.address[N] 
Configures DNS server IP addresses. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "0.0.0.0" 
 

Usage 

dnsAddress = lan.config.dns.address[N] 
lan.config.dns.address[N] = dnsAddress 
 

dnsAddress DNS server IP address 

N Entry index (1 or 2) 
 

Details 

This attribute is an array of DNS (domain name system) server addresses. These addresses take 
priority for DNS lookups and are consulted before any server addresses that are obtained using 
DHCP. This allows local DNS servers to be specified that take priority over DHCP-configured global 
DNS servers. 
You can specify up to two addresses. The address specified by 1 is consulted first for DNS lookups. 
dnsAddress must be a string specifying the DNS server’s IP address in dotted decimal notation. 
Unused entries are returned as "0.0.0.0" when read. To disable an entry, set its value to 
"0.0.0.0" or the empty string "". 
Although only two addresses may be manually specified here, the instrument will use up to three 
DNS server addresses. If two are specified here, only one that is given by a DHCP server is used. If 
no entries are specified here, up to three addresses that are given by a DHCP server are used. 

 

Example 
 

dnsaddress = "164.109.48.173" 
lan.config.dns.address[1] = dnsaddress 

Configure DNS address 1 to 
"164.109.48.173" 

Also see 

lan.config.dns.domain (on page 7-95) 
lan.config.dns.dynamic (on page 7-95) 
lan.config.dns.hostname (on page 7-96) 
lan.config.dns.verify (on page 7-97) 
lan.restoredefaults() (on page 7-101) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-95 

 

lan.config.dns.domain 
Configures the dynamic DNS domain. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "" 
 

Usage 

domain = lan.config.dns.domain 
lan.config.dns.domain = domain 
 

domain Dynamic DNS registration domain; use a string of 255 characters or less 
 

Details 

This attribute holds the domain to request during dynamic DNS registration. Dynamic DNS 
registration works with DHCP to register the domain specified in this attribute with the DNS server. 
The length of the fully qualified host name (combined length of the domain and host name with 
separator characters) must be less than or equal to 255 characters. Although up to 255 characters 
are allowed, you must make sure the combined length is also no more than 255 characters. 

 

Example 
 

print(lan.config.dns.domain) Outputs the present dynamic DNS domain. For 
example, if the domain is "Matrix", the response 
would be: 
Matrix 

 

Also see 

lan.config.dns.dynamic (on page 7-95) 
lan.config.dns.hostname (on page 7-96) 
lan.config.dns.verify (on page 7-97) 
lan.restoredefaults() (on page 7-101) 

 

lan.config.dns.dynamic 
Enables or disables the dynamic DNS registration. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 1 (lan.ENABLE) 
 

Usage 

state = lan.config.dns.dynamic 
lan.config.dns.dynamic = state 
 

state The dynamic DNS registration state. It may be one of the following values: 
1 or lan.ENABLE: Enabled 
0 or lan.DISABLE: Disabled 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-96 707B-901-01 Rev. B / January 2015 

 

Details 

Dynamic DNS registration works with DHCP to register the host name with the DNS server. The host 
name is specified in the lan.config.dns.hostname attribute. 

Example 
 

print(lan.config.dns.dynamic) Outputs the dynamic registration state. 
 
If dynamic DNS registration is enabled, the 
response is: 
1.0000000e+00 

 

Also see 

lan.config.dns.hostname (on page 7-96) 
lan.restoredefaults() (on page 7-101) 

 

lan.config.dns.hostname 
This attribute defines the dynamic DNS host name. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Not applicable Nonvolatile memory Instrument specific 
(see Details) 

 

Usage 

hostName = lan.config.dns.hostname 
lan.config.dns.hostname = hostName 
 

hostName The host name to use for dynamic DNS registration; the host name must: 
• be a string of 15 characters or less 
• start with a letter 
• end with a letter or digit 
• contain only letters, digits, and hyphens 

 

Details 

This attribute holds the host name to request during dynamic DNS registration. Dynamic DNS 
registration works with DHCP to register the host name specified in this attribute with the DNS server. 
The factory default value for hostName is "K-<model number>-<serial number>", where 
<model number> and <serial number> are replaced with the actual model number and serial 
number of the instrument (for example, "K-707B-1234567"). Note that hyphens separate the 
characters of hostName.  
The length of the fully qualified host name (combined length of the domain and host name with 
separator characters) must be less than or equal to 255 characters. Although up to 15 characters can 
be entered here, care must be taken to be sure the combined length is no more than 255 characters. 
Setting this attribute to an empty string (in other words, setting this attribute to a string of length zero, 
or one consisting entirely of whitespace characters) will revert the host name to the factory default 
value. 

 

Example 
 

print(lan.config.dns.hostname) Outputs the present dynamic DNS host name. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-97 

 

Also see 

lan.config.dns.dynamic (on page 7-95) 
lan.restoredefaults() (on page 7-101) 

 

lan.config.dns.verify 
This attribute defines the DNS host name verification state. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 1 (lan.ENABLE) 
 

Usage 

state = lan.config.dns.verify 
lan.config.dns.verify = state 
 

state DNS hostname verification state: 
1 or lan.ENABLE: DNS host name verification enabled 
0 or lan.DISABLE: DNS host name verification disabled 

 

Details 

When this is enabled, the instrument performs DNS lookups to verify that the DNS host name 
matches the value specified by lan.config.dns.hostname. 

 

Example 
 

print(lan.config.dns.verify) Outputs the present DNS host name verification 
state. 
 
If it is enabled, the output is: 
1.0000000e+00 

 

Also see 

lan.config.dns.hostname (on page 7-96) 
lan.restoredefaults() (on page 7-101) 

 

lan.config.gateway 
This attribute contains the LAN default gateway address. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "0.0.0.0" 
 

Usage 

gatewayAddress = lan.config.gateway 
lan.config.gateway = gatewayAddress 
 

gatewayAddress LAN default gateway address; must be a string specifying the default 
gateway’s IP address in dotted decimal notation 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-98 707B-901-01 Rev. B / January 2015 

 

Details 

This attribute specifies the default gateway IP address to use when manual or DLLA configuration 
methods are used to configure the LAN. If DHCP is enabled, this setting is ignored. 
This attribute does not indicate the actual setting that is presently in effect. Use the 
lan.status.gateway attribute to determine the present operating state of the LAN. 
The IP address must be formatted in four groups of numbers, each separated by a decimal. 

 

Example 
 

print(lan.config.gateway) Outputs the default gateway address. For example, 
you might see the output: 
192.168.0.1 

 

Also see 

lan.restoredefaults() (on page 7-101) 
lan.status.gateway (on page 7-103) 

 

lan.config.ipaddress 
This command specifies the LAN IP address. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "192.168.0.2" 
 

Usage 

ipAddress = lan.config.ipaddress 
lan.config.ipaddress = ipAddress 
 

ipAddress LAN IP address; must be a string specifying the IP address in dotted decimal 
notation 

 

Details 

This command specifies the LAN IP address to use when the LAN is configured using the manual 
configuration method. This setting is ignored when DLLA or DHCP is used.  
This attribute does not indicate the actual setting that is presently in effect. Use the 
lan.status.ipaddress attribute to determine the present operating state of the LAN. 

 

Example 
 

ipaddress = lan.config.ipaddress Retrieves the presently set LAN IP address. 
 

Also see 

lan.restoredefaults() (on page 7-101) 
lan.status.ipaddress (on page 7-104) 

 

lan.config.method 
This attribute contains the LAN settings configuration method. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 0 (lan.AUTO) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-99 

 

Usage 

method = lan.config.method 
lan.config.method = method 
 

method The method for configuring LAN settings; it can be one of the following 
values: 
0 or lan.AUTO: Selects automatic sequencing of configuration methods 
1 or lan.MANUAL: Use only manually specified configuration settings 

 

Details 

This attribute controls how the LAN IP address, subnet mask, default gateway address, and DNS 
server addresses are determined. 
When method is lan.AUTO, the instrument first attempts to configure the LAN settings using dynamic 
host configuration protocol (DHCP). If DHCP fails, it tries dynamic link local addressing (DLLA). If 
DLLA fails, it uses the manually specified settings. 
When method is lan.MANUAL, only the manually specified settings are used. Neither DHCP nor 
DLLA are attempted. 

 

Example 
 

print(lan.config.method) Outputs the current method. 
For example: 
1.0000000e+00 

Also see 

lan.restoredefaults() (on page 7-101) 
 

lan.config.subnetmask 
This attribute contains the LAN subnet mask. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory "255.255.255.0" 
 

Usage 

mask = lan.config.subnetmask 
lan.config.subnetmask = mask 
 

mask String that specifies the LAN subnet mask value in dotted decimal notation 
 

Details 

This attribute specifies the LAN subnet mask that will be used when the manual configuration method 
is used to configure the LAN. This setting is ignored when DLLA or DHCP is used. 
This attribute does not indicate the actual setting presently in effect. Use the 
lan.status.subnetmask attribute to determine the present operating state of the LAN. 

 

Example 
 

print(lan.config.subnetmask) Outputs the LAN subnet mask, such as: 
255.255.255.0 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-100 707B-901-01 Rev. B / January 2015 

 

Also see 

lan.restoredefaults() (on page 7-101) 
lan.status.subnetmask (on page 7-107) 

 

lan.lxidomain 
This attribute contains the LXI domain. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes LAN restore defaults Nonvolatile memory 0 

Usage 

domain = lan.lxidomain 
lan.lxidomain = domain 
 

domain The LXI domain number (0 to 255) 

Details 

This attribute sets the LXI domain number. 
All outgoing LXI packets are generated with this domain number. All inbound LXI packets are ignored 
unless they have this domain number. 

Example 
 

print(lan.lxidomain) Displays the LXI domain. 

Also see 

None 
 

lan.nagle 
This attribute controls the state of the LAN Nagle algorithm. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Power cycle Not saved 0 (lan.DISABLE) 

Usage 

state = lan.nagle 
lan.nagle = state 
 

state 1 or lan.ENABLE: Enable the LAN Nagle algorithm for TCP connections 
0 or lan.DISABLE: Disable the Nagle algorithm for TCP connections 

Details 

This attribute enables or disables the use of the LAN Nagle algorithm on transmission control protocol 
(TCP) connections. 

Also see 

lan.restoredefaults() (on page 7-101) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-101 

 

lan.reset() 
This function resets the LAN interface. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.reset() 

Details 

This function resets the LAN interface. It performs the commands lan.restoredefaults() and 
lan.applysettings(). 

Also see 

lan.applysettings() (on page 7-93) 
lan.restoredefaults() (on page 7-101) 

 

lan.restoredefaults() 
This function resets LAN settings to default values. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.restoredefaults() 
 

Details 

The settings that are restored are shown in the following table. 
Settings that are restored to default 

Attribute Default setting 

lan.config.dns.address[N] "0.0.0.0" 
lan.config.dns.domain "" 
lan.config.dns.dynamic lan.ENABLE 

lan.config.dns.hostname "K-<model number>-<serial number>" 

lan.config.dns.verify lan.ENABLE 

lan.config.gateway "0.0.0.0" 
lan.config.ipaddress "0.0.0.0" 

lan.config.method lan.AUTO 

lan.config.subnetmask "255.255.255.0" 
lan.lxidomain 0 

localnode.password "admin" 
 

This command is run when lan.reset() is sent. 
 

Example 
 

lan.restoredefaults() Restores the LAN defaults. 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-102 707B-901-01 Rev. B / January 2015 

 

Also see 

lan.reset() (on page 7-101) 
localnode.password (on page 7-121) 

 

lan.status.dns.address[N] 
This attribute contains the DNS server IP addresses. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

dnsAddress = lan.status.dns.address[N] 
 

dnsAddress DNS server IP address 
N Entry index (1, 2, or 3) 

 

Details 

This attribute is an array of DNS server addresses. The instrument can use up to three addresses. 
Unused or disabled entries are returned as "0.0.0.0" when read. The dnsAddress returned is a 
string specifying the IP address of the DNS server in dotted decimal notation. 
You can only specify two addresses manually. However, the instrument uses up to three DNS server 
addresses. If two are specified, only the one given by a DHCP server is used. If no entries are 
specified, up to three address given by a DHCP server are used. 
The value of lan.status.dns.address[1] is referenced first for all DNS lookups. The values of 
lan.status.dns.address[2] and lan.status.dns.address[3] are referenced second and 
third, respectively. 

 

Example 
 

print(lan.status.dns.address[1]) Outputs DNS server address 1, for example: 
164.109.48.173 

 

Also see 

lan.status.dns.name (on page 7-102) 
 

lan.status.dns.name 
This attribute contains the present DNS fully qualified host name. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

hostName = lan.status.dns.name 
 

hostName Fully qualified DNS host name that can be used to connect to the instrument 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-103 

 

Details 

A fully qualified domain name (FQDN), sometimes referred to as an absolute domain name, is a 
domain name that specifies its exact location in the tree hierarchy of the Domain Name System 
(DNS). 
A FQDN is the complete domain name for a specific computer or host on the LAN. The FQDN 
consists of two parts: the host name and the domain name. 
If the DNS host name for an instrument is not found, this attribute stores the IP address in dotted 
decimal notation. 

 

Example 
 

print(lan.status.dns.name) Outputs the dynamic DNS host name. 
 

Also see 

lan.config.dns.address[N] (on page 7-94) 
lan.config.dns.hostname (on page 7-96) 

 

lan.status.duplex 
This attribute contains the duplex mode presently in use by the LAN interface. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

duplex = lan.status.duplex 
 

duplex LAN duplex setting can be one of the following values: 
0 or lan.HALF: half-duplex operation 
1 or lan.FULL: full-duplex operation 

 

Example 
 

print(lan.status.duplex) Outputs the present LAN duplex mode, such as: 
1.0000000e+00 

 

Also see 

None 
 

lan.status.gateway 
This attribute contains the gateway address presently in use by the LAN interface. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

gatewayAddress = lan.status.gateway 
 

gatewayAddress LAN gateway address presently being used 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-104 707B-901-01 Rev. B / January 2015 

 

Details 

The value of gatewayAddress is a string that indicates the IP address of the gateway in dotted 
decimal notation. 

 

Example 
 

print(lan.status.gateway) Outputs the gateway address, such as: 
192.168.0.1 

Also see 

lan.config.gateway (on page 7-97) 
 

lan.status.ipaddress 
This attribute contains the LAN IP address presently in use by the LAN interface. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

ipAddress = lan.status.ipaddress 
 

ipAddress LAN IP address specified in dotted decimal notation 
 

Details 

The IP address is a character string that represents the IP address assigned to the instrument. 
 

Example 
 

print(lan.status.ipaddress) Outputs the LAN IP address currently in use, such 
as: 
192.168.0.2 

 

Also see 

lan.config.ipaddress (on page 7-98) 
 
 

lan.status.macaddress 
This attribute contains the LAN MAC address. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

macAddress = lan.status.macaddress 
 

macAddress The instrument MAC address 
 

Details 

The MAC address is a character string representing the MAC address of the instrument in 
hexadecimal notation. The string includes colons that separate the address octets (see Example). 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-105 

 

Example 
 

print(lan.status.macaddress) Outputs the MAC address of the instrument, for 
example: 
00:60:1A:00:00:57 

 

Also see 

None 
 

lan.status.port.dst 
This attribute contains the LAN dead socket termination port number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

port = lan.status.port.dst 
 

port Dead socket termination socket port number 
 

Details 

This attribute holds the TCP port number used to reset all other LAN socket connections. 
To reset all LAN connections, open a connection to the DST port number. 

 

Example 
 

print(lan.status.port.dst) Outputs the LAN dead socket termination port 
number, such as: 
5.0300000e+03 

Also see 

None 
 

lan.status.port.rawsocket 
This attribute contains the LAN raw socket connection port number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

port = lan.status.port.rawsocket 
 

port Raw socket port number 
 

Details 

Stores the TCP port number used to connect the instrument and to control the instrument over a raw 
socket communication interface. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-106 707B-901-01 Rev. B / January 2015 

 

Example 
 

print(lan.status.port.rawsocket) Outputs the LAN raw socket port number, such as: 
5.02500e+03 

 

Also see 

None 
 

lan.status.port.telnet 
This attribute contains the LAN Telnet connection port number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

port = lan.status.port.telnet 
 

port Telnet port number 
 

Details 

This attribute holds the TCP port number used to connect to the instrument to control it over a Telnet 
interface. 

 

Example 
 

print(lan.status.port.telnet) Get the LAN Telnet connection port number. 
Output: 
2.3000000e+01 

 

Also see 

None 
 
 

lan.status.port.vxi11 
This attribute contains the LAN VXI-11 connection port number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

port = lan.status.port.vxi11 
 

port LAN VXI-11 port number 
 

Details 

This attribute stores the TCP port number used to connect to the instrument over a VXI-11 interface. 
 

Example 
 

print(lan.status.port.vxi11) Outputs the VXI-11 number, such as: 
1.02400e+03 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-107 

 

Also see 

None 
 
 

lan.status.speed 
This attribute contains the LAN speed. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

speed = lan.status.speed 
 

speed LAN speed in Mbps, either 10 or 100 
 

Details 

This attribute indicates the transmission speed currently in use by the LAN interface. 
 

Example 
 

print(lan.status.speed) Outputs the instrument's transmission speed 
presently in use, such as: 
1.0000000e+02 

Also see 

None 
 
 

lan.status.subnetmask 
This attribute contains the LAN subnet mask that is presently in use by the LAN interface. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

mask = lan.status.subnetmask 
 

mask A string specifying the subnet mask in dotted decimal notation 
 

Details 

Use this attribute to determine the present operating state of the LAN. This attribute will return the 
present LAN subnet mask value if the LAN is manually configured, or when DLLA or DHCP is used. 

Example 
 

print(lan.status.subnetmask) Outputs the subnet mask of the instrument that is 
presently in use, such as: 
255.255.255.0 

 

Also see 

lan.config.subnetmask (on page 7-99) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-108 707B-901-01 Rev. B / January 2015 

 

lan.trigger[N].assert() 
This function simulates the occurrence of the trigger and generates the corresponding event ID. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.trigger[N].assert() 
 

N The LAN event number (1 to 8) 
 

Details 

Generates and sends a LAN trigger packet for the LAN event number specified. 
Sets the pseudo line state to the appropriate state. 
The following indexes provide the listed LXI events: 

• 1:LAN0 
• 2:LAN1 
• 3:LAN2 
• … 
• 8:LAN7 

 

Example 
 

lan.trigger[5].assert() Creates a trigger with LAN packet 5. 
 

Also see 

lan.lxidomain (on page 7-100) 
lan.trigger[N].clear() (on page 7-108) 
lan.trigger[N].mode (on page 7-112) 
lan.trigger[N].overrun (on page 7-113) 
lan.trigger[N].stimulus (on page 7-115) 
lan.trigger[N].wait() (on page 7-117) 

 

lan.trigger[N].clear() 
This function clears the event detector for a LAN trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.trigger[N].clear() 
 

N The LAN event number (1 to 8) to clear 
 

Details 

The trigger event detector enters the detected state when an event is detected. This function clears a 
trigger event detector and discards the previous of the trigger packet. 
This function clears all overruns associated with this LAN trigger. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-109 

 

Example 
 

lan.trigger[5].clear() Clears the event detector with LAN packet 5. 

Also see 

lan.trigger[N].assert() (on page 7-108) 
lan.trigger[N].overrun (on page 7-113) 
lan.trigger[N].stimulus (on page 7-115) 
lan.trigger[N].wait() (on page 7-117) 

 

lan.trigger[N].connect() 
This functionprepares the event generator for outgoing trigger events. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.trigger[N].connect() 
 

N The LAN event number (1 to 8) 

Details 

This command prepares the event generator to send event messages. For TCP connections, this 
opens the TCP connection. 
The event generator automatically disconnects when either the protocol or IP address for this event is 
changed. 

Example 
 

lan.trigger[1].protocol = lan.MULTICAST 
lan.trigger[1].connect() 
lan.trigger[1].assert() 

Set the protocol for LAN trigger 1 to be 
multicast when sending LAN triggers. 
Then, after connecting the LAN trigger, 
send a message on LAN trigger 1 by 
asserting it. 

Also see 

lan.trigger[N].assert() (on page 7-108) 
lan.trigger[N].ipaddress (on page 7-111) 
lan.trigger[N].overrun (on page 7-113) 
lan.trigger[N].protocol (on page 7-114) 
lan.trigger[N].stimulus (on page 7-115) 
lan.trigger[N].wait() (on page 7-117) 

 

lan.trigger[N].connected 
This attribute stores the LAN event connection state. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-110 707B-901-01 Rev. B / January 2015 

 

Usage 

connected = lan.trigger[N].connected 
 

connected The LAN event connection state: 
• true: Connected 
• false: Not connected 

N The LAN event number (1 to 8) 
 

Details 

This read-only attribute is set to true when the LAN trigger is connected and ready to send trigger 
events following a successful lan.trigger[N].connect() command; if the LAN trigger is not 
ready to send trigger events, this value is false. 
This attribute is also false when either lan.trigger[N].protocol or 
lan.trigger[N].ipaddress attributes are changed or the remote connection closes the 
connection. 

 

Example 
 

lan.trigger[1].protocol = lan.MULTICAST 
print(lan.trigger[1].connected) 

Outputs true if connected, or false if not 
connected. 
Example output: 
false 

Also see 

lan.trigger[N].connect() (on page 7-109) 
lan.trigger[N].ipaddress (on page 7-111) 
lan.trigger[N].protocol (on page 7-114) 

 

lan.trigger[N].disconnect() 
This function disconnects the LAN trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

lan.trigger[N].disconnect() 
 

N The LAN event number (1 to 8) 

Details 

For TCP connections, this closes the TCP connection. 
The LAN trigger automatically disconnects when either the lan.trigger[N].protocol or 
lan.trigger[N].ipaddress attributes for this event are changed. 

Also see 

lan.trigger[N].ipaddress (on page 7-111) 
lan.trigger[N].protocol (on page 7-114) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-111 

 

lan.trigger[N].EVENT_ID 
This constant is the event identifier used to route the LAN trigger to other subsystems (using stimulus properties). 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    

Usage 

lan.trigger[N].EVENT_ID 
 

N The LAN event number (1 to 8) 
 

Details 

Set the stimulus of any trigger event detector to the value of this constant to have it respond to 
incoming LAN trigger packets. 

 

Example 
 

digio.trigger[14].stimulus = lan.trigger[1].EVENT_ID Route occurrences of triggers 
on LAN trigger 1 to digital I/O 
trigger 14. 

Also see 

None 
 
 

lan.trigger[N].ipaddress 
This attribute specifies the address (in dotted-decimal format) of UDP or TCP listeners. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
LAN trigger N reset 
Recall setup 

Create configuration script  "0.0.0.0" 

 

Usage 

ipAddress = lan.trigger[N].ipaddress 
lan.trigger[N].ipaddress = ipAddress 
 

ipAddress The LAN address for this attribute as a string in dotted decimal notation 
N The LAN event number (1 to 8) 

 

Details 

Sets the IP address for outgoing trigger events. 
Set to "0.0.0.0" for multicast.   
After changing this setting, the lan.trigger[N].connect() command must be called before 
outgoing messages can be sent. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-112 707B-901-01 Rev. B / January 2015 

 

Example 
 

lan.trigger[3].protocol = lan.TCP 
lan.trigger[3].ipaddress = "192.168.1.100" 
lan.trigger[3].connect() 

Set the protocol for LAN trigger 3 to be 
lan.TCP when sending LAN triggers. 
Use IP address "192.168.1.100" to 
connect the LAN trigger. 

 

Also see 

lan.trigger[N].connect() (on page 7-109) 
 

lan.trigger[N].mode 
This attribute sets the trigger operation and detection mode of the specified LAN event. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
LAN trigger N reset 
Recall setup 

Create configuration script  0 (lan.TRIG_EITHER) 

Usage 

mode = lan.trigger[N].mode 
lan.trigger[N].mode = mode 
 

mode A number representing the trigger mode (0 to 7); see the Details section for 
more information 

N A number representing the LAN event number (1 to 8) 

Details 

This command controls how the trigger event detector and the output trigger generator operate on the 
given trigger. These settings are intended to provide behavior similar to the digital I/O triggers. 
LAN trigger mode values 

Mode  Number Trigger packets detected as 
input 

LAN trigger packet 
generated for output 
with a… 

lan.TRIG_EITHER 0 Rising or falling edge (positive 
or negative state) 

negative state 

lan.TRIG_FALLING 1 Falling edge (negative state) negative state 
lan.TRIG_RISING 2 Rising edge (positive state) positive state 
lan.TRIG_RISINGA 3 Rising edge (positive state) positive state 
lan.TRIG_RISINGM 4 Rising edge (positive state) positive state 
lan.TRIG_SYNCHRONOUS 5 Falling edge (negative state) positive state 
lan.TRIG_SYNCHRONOUSA 6 Falling edge (negative state) positive state 
lan.TRIG_SYNCHRONOUSM 7 Rising edge (positive state) negative state 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-113 

 

lan.TRIG_RISING and lan.TRIG_RISINGA are the same. 
lan.TRIG_RISING and lan.TRIG_RISINGM are the same. 
Use of either lan.TRIG_SYNCHRONOUSA or lan.TRIG_SYNCHRONOUSM over 
lan.TRIG_SYNCHRONOUS is preferred, as lan.TRIG_SYNCHRONOUS is provided for compatibility 
with other Keithley Instruments products. 

Example 
 

print(lan.trigger[1].mode) Outputs the present LAN trigger mode of LAN 
event 1. 
 

Also see 

Digital I/O 
TSP-Link system (on page 6-44) 

 

lan.trigger[N].overrun 
This attribute contains the overrun status of the LAN event detector. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes LAN trigger N clear 
LAN trigger N reset 
Instrument reset 
Recall setup 

Not applicable Not applicable 

Usage 

overrun = lan.trigger[N].overrun 
 

overrun The trigger overrun state for the specified LAN packet (true or false) 
N The LAN event number (1 to 8) 

 

Details 

This command indicates whether an event has been ignored because the event detector was already 
in the detected state when the event occurred. 
This is an indication of the state of the event detector built into the synchronization line itself. It does 
not indicate if an overrun occurred in any other part of the trigger model, or in any other construct that 
is monitoring the event. 
It also is not an indication of an output trigger overrun. 

 

Example 
 

overrun = lan.trigger[5].overrun 
print(overrun) 

Checks the overrun status of a trigger on LAN5 and 
outputs the value, such as: 
false 

Also see 

lan.trigger[N].assert() (on page 7-108) 
lan.trigger[N].clear() (on page 7-108) 
lan.trigger[N].stimulus (on page 7-115) 
lan.trigger[N].wait() (on page 7-117) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-114 707B-901-01 Rev. B / January 2015 

 

lan.trigger[N].protocol 
This attribute sets the LAN protocol to use for sending trigger messages. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
LAN trigger N reset 
Recall setup 

Create configuration script  0 (lan.TCP) 

Usage 

protocol = lan.trigger[N].protocol 
lan.trigger[N].protocol = protocol 
 

protocol The protocol to use for messages from the trigger: 
• 0 or lan.TCP 
• 1 or lan.UDP 
• 2 or lan.MULTICAST 

N The LAN event number (1 to 8) 
 

Details 

The LAN trigger listens for trigger messages on all supported protocols, but uses the designated 
protocol for sending outgoing messages. After changing this setting, lan.trigger[N].connect() 
must be called before outgoing event messages can be sent. 
When the lan.MULTICAST protocol is selected, the lan.trigger[N].ipaddress attribute is 
ignored and event messages are sent to the multicast address 224.0.23.159.   

 

Example 
 

print(lan.trigger[1].protocol) Get LAN protocol to use for sending trigger 
messages for LAN event 1. 

Also see 

lan.trigger[N].connect() (on page 7-109) 
lan.trigger[N].ipaddress (on page 7-111) 

 

lan.trigger[N].pseudostate 
This attribute sets the simulated line state for the LAN trigger. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
LAN trigger N reset 
Recall setup 

Create configuration script  1 

 

Usage 

pseudostate = lan.trigger[N].pseudostate 
lan.trigger[N].pseudostate = pseudostate 
 

pseudostate The simulated line state (0 or 1) 

N A number representing the LAN event number (1 to 8) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-115 

 

Details 

This attribute can be set to initialize the pseudo line state to a known value. 
Setting this attribute does not cause the LAN trigger to generate any events or output packets. 

 

Example 
 

print(lan.trigger[1].pseudostate) Get the present simulated line state for the LAN 
event 1. 

 

Also see 

None 
 

lan.trigger[N].stimulus 
This attribute specifies events that cause this trigger to assert. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
LAN trigger N reset 
Recall setup 

Create configuration script 0 

 

Usage 

triggerStimulus = lan.trigger[N].stimulus 
lan.trigger[N].stimulus = triggerStimulus 
 

triggerStimulus The LAN event identifier used to trigger the event 
N A number specifying the trigger packet over the LAN for which to set or query 

the trigger source (1 to 8) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-116 707B-901-01 Rev. B / January 2015 

 

Details 

This attribute specifies which event causes a LAN trigger packet to be sent for this trigger. Set 
triggerStimulus to one of the existing trigger event IDs shown in the following table. 
 

Trigger event IDs 

Trigger event ID Description 

digio.trigger[N].EVENT_ID An edge (rising, falling, or either based on the 
configuration of the line) on the digital input line. 

display.trigger.EVENT_ID The trigger key on the front panel is pressed. 
trigger.EVENT_ID A *trg message on the active command interface. If 

GPIB is the active command interface, a GET 
message also generates this event. 

trigger.blender[N].EVENT_ID A combination of events has occurred. 
trigger.timer[N].EVENT_ID A delay expired. 
tsplink.trigger[N].EVENT_ID An edge (rising, falling, or either based on the 

configuration of the line) on the TSP-Link trigger line. 
lan.trigger[N].EVENT_ID A LAN trigger event has occurred. 
scan.trigger.EVENT_SCAN_READY A Scan Ready Event has occurred. 
scan.trigger.EVENT_SCAN_START A Scan Start Event has occurred. 
scan.trigger.EVENT_CHANNEL_READY A Channel Ready Event has occurred. 
scan.trigger.EVENT_SCAN_COMP A Scan Complete Event has occurred. 
scan.trigger.EVENT_IDLE An Idle Event has occurred. 

Setting this attribute to zero disables automatic trigger generation. 
If any events are detected prior to calling lan.trigger[N].connect(), the event is ignored and 
the action overrun is set. 

 

Example 
 

lan.trigger[5].stimulus = trigger.timer[1].EVENT_ID Use timer 1 trigger event as 
the source for LAN packet 5 
trigger stimulus. 

 

Also see 

lan.trigger[N].assert() (on page 7-108) 
lan.trigger[N].clear() (on page 7-108) 
lan.trigger[N].connect() (on page 7-109) 
lan.trigger[N].overrun (on page 7-113) 
lan.trigger[N].wait() (on page 7-117) 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-117 

 

lan.trigger[N].wait() 
This function waits for an input trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

triggered = lan.trigger[N].wait(timeout) 
 

triggered Trigger detection indication (true or false) 
N The trigger packet over LAN to wait for (1 to 8) 
timeout Maximum amount of time in seconds to wait for the trigger event 

 

Details 

If one or more trigger events have been detected since the last time lan.trigger[N].wait() or 
lan.trigger[N].clear() was called, this function returns immediately. 
After waiting for a LAN trigger event with this function, the event detector is automatically reset and 
rearmed regardless of the number of events detected. 

 

Example 
 

triggered = lan.trigger[5].wait(3) Wait for a trigger with LAN packet 5 with a timeout of 
3 seconds. 

Also see 

lan.trigger[N].assert() (on page 7-108) 
lan.trigger[N].clear() (on page 7-108) 
lan.trigger[N].overrun (on page 7-113) 
lan.trigger[N].stimulus (on page 7-115) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-118 707B-901-01 Rev. B / January 2015 

 

localnode.define.* 
These constants indicate the number of available features (of each feature type) for each local node instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
CONSTANT (R) - -    

.MAX_TIMERS Yes    

.MAX_DIO_LINES Yes    

.MAX_TSPLINK_TRIGS Yes    

.MAX_BLENDERS Yes    

.MAX_BLENDER_INPUTS Yes    

.MAX_LAN_TRIGS Yes    

Usage 

maxNumber = localnode.define.MAX_TIMERS 
maxNumber = localnode.define.MAX_DIO_LINES 
maxNumber = localnode.define.MAX_TSPLINK_TRIGS 
maxNumber = localnode.define.MAX_BLENDERS 
maxNumber = localnode.define.MAX_BLENDER_INPUTS 
maxNumber = localnode.define.MAX_LAN_TRIGS 
maxNumber = localnode.define.MAX_CHANNEL_TRIGS 
 

maxNumber A variable assigned the value of the constant.; the constant equals the local node 
instrument's maximum number available for the specified feature 

Details 

These read-only constants indicate the following types of features: timers, digital input/output lines, 
triggers, and blenders. They provide the number of features available (which is the maximum) for the 
specified local node feature. 
When using this command from a remote node, localnode should be replaced with the node 
reference, for example node[5].define.MAX_TIMERS. 
 

Example 
 

maxNumber = localnode.define.MAX_TIMERS Reads the maximum number of timers 
that are available for the presently active 
instrument. 

Also see 

None 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-119 

 

localnode.description 
This attribute stores a user-defined description and mDNS service name of the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Not applicable Nonvolatile memory Instrument specific (see Details) 

Usage 

localnode.description = description 
description = localnode.description 
 

description User-defined description and mDNS service name of the instrument; use a string of 
63 characters or less 

 

Details 

This attribute stores a string that contains a description of the instrument. This value appears on LXI 
welcome page of the instrument. The value of this attribute is also used as the mDNS service name 
of the instrument. 
This attribute's default value contains Keithley ModelNumber #SSSSSSSS, where: ModelNumber  
is the instrument's model number, and #SSSSSSSS is the instrument's eight-digit serial number. You 
can change it to a value that makes sense for your system. Setting this attribute to an empty string (in 
other words, setting this attribute to a string of length zero, or one consisting entirely of whitespace 
characters) will revert the description to the factory default value. 
When using this command from a remote node, localnode should be replaced with the node 
reference, for example node[5].description. 

 

Example 
 

description = "System in Lab 05" 
localnode.description = description 

Set description to "System in Lab 05". 

Also see 

None 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-120 707B-901-01 Rev. B / January 2015 

 

node[N].execute() 
This function starts test scripts on a remote TSP-Link node. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes (see Details)    

Usage 

node[N].execute(scriptCode) 
 

N The node number of this instrument (1 to 64) 
scriptCode A string containing the source code 

Details 

This command is only applicable to TSP-Link systems. You can use this command to use the remote 
master node to run a script on the specified node. This function does not run test scripts on the 
master node; only on the subordinate node when initiated by the master node. 
This function may only be called when the group number of the node is different than the node of the 
master. 
This function does not wait for the script to finish execution. 

Example 1 
 

node[2].execute(sourcecode) Runs script code on node 2. The code is in a string variable 
called sourcecode. 

Example 2 
 

node[3].execute("x = 5") Runs script code in string constant ("x = 5") to set x 
equal to 5 on node 3. 

Example 3 
 

node[32].execute(TestDut.source) Runs the test script stored in the variable TestDut 
(previously stored on the master node) on node 32. 

Also see 

Using TSP to run test scripts simultaneously (on page 6-48) 
tsplink.group (on page 7-214) 

 

node[N].getglobal() 
This function returns the value of a global variable. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

value = node[N].getglobal(name) 
 

value The value of the variable 
N The node number of this instrument (1 to 64) 
name The global variable name 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-121 

 

Details 

This function retrieves the value of a global variable from the run-time environment of this node. 
Do not use this command to retrieve the value of a global variable from the local node. Instead, 
access the global variable directly. This command should only be used from a remote master when 
controlling this instrument over a TSP-Link® network. 

 

Example 
 

print(node[5].getglobal("test_val")) Retrieves and outputs the value of the global variable 
named test_val from node 5. 

 

Also see 

node[N].setglobal() (on page 7-126) 
Using TSP to run test scripts simultaneously (on page 6-48) 

 

localnode.model 
This attribute stores the model number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

model = localnode.model 
 

model The model number of the instrument 

Example 
 

print(localnode.model) Outputs the model number of the local node. For example: 
707B  

Also see 

localnode.serialno (on page 7-126) 
 

localnode.password 
This attribute stores the remote access password. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (W) Yes LAN reset Nonvolatile memory "admin" 
 

Usage 

localnode.password = "password" 
 

passWord A string that contains the remote interface password 
 

Details 

This write-only attribute stores the password that is set for any remote interface. When password 
usage is enabled (localnode.passwordmode), you must supply a password to change the 
configuration or to control an instrument from a web page or other remote command interface. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-122 707B-901-01 Rev. B / January 2015 

 

The instrument continues to use the old password for all interactions until the command to change it 
executes. When changing the password, give the instrument time to execute the command before 
attempting to use the new password. 
You can retrieve the password from the front panel through MENU > LAN > STATUS > PASSWORD. 

 

You can reset the password by resetting the LAN from the front panel or by using the lan.reset() 
command. 
When using this command from a remote node, localnode should be replaced with the node 
reference, for example, node[5].password. 

 

Example 
 

localnode.password = "N3wpa55w0rd" Changes the remote interface password to 
N3wpa55w0rd. 

Also see 

lan.reset() (on page 7-101) 
localnode.passwordmode (on page 7-122) 

 

localnode.passwordmode 
This attribute stores the remote access password enable mode. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Not applicable Nonvolatile memory 1 (localnode.PASSWORD_WEB) 
 

Usage 

mode = localnode.passwordmode 
localnode.passwordmode = mode 
 

mode The remote password enable mode 
 

Details 

This attribute controls if and where remote access passwords are required. Set this attribute to one of 
the values below to enable password checking: 
localnode.PASSWORD_NONE or 0: Disable passwords everywhere 
localnode.PASSWORD_WEB or 1: Use passwords on the web interface only 
localnode.PASSWORD_LAN or 2: Use passwords on the web interface and all LAN interfaces 
localnode.PASSWORD_ALL or 3: Use passwords on the web interface and all remote command 
interfaces 
When using this command from a remote node, localnode should be replaced with the node 
reference, for example node[5].passwordmode. 

 

Example 
 

mode = localnode.PASSWORD_WEB 
localnode.passwordmode = mode 

Sets value of mode to PASSWORD_WEB. 
Allows use of passwords on the web interface only. 

 

Also see 

localnode.password (on page 7-121) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-123 

 

localnode.prompts 
This attribute determines if the instrument generates prompts in response to command messages. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Power cycle Not saved 0 (disabled) 
 

Usage 

prompting = localnode.prompts 
localnode.prompts = prompting 
 

prompting Do not generate prompts:  1 
Generate prompts:  0 

 

Details 

When the prompting mode is enabled, the instrument generates prompts when the instrument is 
ready to take another command. Because the prompt is not generated until the previous command 
completes, enabling prompts provides handshaking with the instrument to prevent buffer overruns. 
When prompting is enabled, the instrument might generate the following prompts: 
• TSP>. The standard prompt, which indicates that the previous command completed normally. 
• TSP?. The prompt that is issued if there are unread entries in the error queue when the prompt is 

issued. Like the TSP> prompt, it indicates that processing of the command is complete. It does 
not mean the previous command generated an error, only that there were still errors in the queue 
when the command processing was complete. 

• >>>>. The continuation prompt, which occurs when downloading scripts. When downloading 
scripts, many command messages must be sent as a group. The continuation prompt indicates 
that the instrument is expecting more messages as part of the present command. 

Commands do not generate prompts. The instrument generates prompts in response to command 
completion. 
Prompts are enabled or disabled only for the remote interface that is active when you send the 
command. For example, if you enable prompts when the GPIB connection is active, they will not be 
enabled for a subsequent USB connection. 

 

Do not disable prompting when using Test Script Builder. Test Script Builder requires prompts and 
sets the prompting mode automatically. If you disable prompting, the instrument will stop responding 
when you communicate using Test Script Builder because it is waiting for a common complete 
prompt from Test Script Builder. 

 

Example 
 

localnode.prompts = 1 Enable prompting. 

Also see 

localnode.prompts4882 (on page 7-124) 
localnode.showerrors (on page 7-127) 
tsplink.reset() (on page 7-217)  

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-124 707B-901-01 Rev. B / January 2015 

 

localnode.prompts4882 
This attribute enables and disables the generation of prompts for IEEE Std 488.2 common commands. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Power cycle Not saved 1 (enabled) 
 

Usage 

prompting = localnode.prompts4882 
localnode.prompts4882 = prompting 
 

prompting IEEE Std 488.2 prompting mode: 
• Disable prompting: 0 
• Enable prompting: 1 

 

Details 

When this attribute is enabled, the IEEE Std 488.2 common commands generate prompts if 
prompting is enabled with the localnode.prompts attribute. If localnode.prompts4882 is 
enabled, limit the number of *trg commands sent to a running script to 50 regardless of the setting 
of the localnode.prompts attribute. 
When this attribute is disabled, IEEE Std 488.2 common commands will not generate prompts. When 
using the *trg command with a script that executes trigger.wait() repeatedly, disable 
prompting to avoid problems associated with the command interface input queue filling. 

 

Example 
 

localnode.prompts4882 = 0 Disables IEEE Std 488.2 common command prompting. 

Also see 

localnode.prompts (on page 7-123) 
 

localnode.reset() 
This function resets the local node instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

localnode.reset() 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-125 

 

Details 

If you want to reset a specific instrument or a subordinate node, use the node[X].reset() 
command. 
A local node reset includes a channel.reset("allslots") and a scan.reset(). In addition: 

• Other settings are restored back to factory default settings 
• Existing channel patterns are deleted 
• All channels are opened 

A localnode.reset() is different than a reset() because reset() resets the entire system.  
When using this command from a remote node, localnode should be replaced with the node 
reference, for example node[5].reset(). 

 

Example 
 

localnode.reset() Resets the local node. 
 

Also see 

channel.reset() (on page 7-40) 
reset() (on page 7-135) 
scan.reset() (on page 7-146) 

 

localnode.revision 
This attribute stores the firmware revision level. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

revision = localnode.revision 
 

revision Firmware revision level 
 

Details 

This attribute indicates the revision number of the firmware that is presently running in the instrument. 
When using this command from a remote node, localnode should be replaced with the node 
reference. For example, node[5].revision. 

 

Example 
 

print(localnode.revision) Outputs the present revision level. 
Sample output: 
01.00a 

 

Also see 

localnode.description (on page 7-119) 
localnode.model (on page 7-121) 
localnode.serialno (on page 7-126) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-126 707B-901-01 Rev. B / January 2015 

 

localnode.serialno 
This attribute stores the instrument's serial number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

serialno = localnode.serialno 
 

serialno The serial number of the instrument 
 

Details 

This indicates the instrument serial number. 
 

Example 
 

display.clear() 
display.settext(localnode.serialno) 

Clears the instrument display. 
Places the serial number of the instrument on the top line 
of its display. 

 

Also see 

localnode.description (on page 7-119) 
localnode.model (on page 7-121) 
localnode.revision (on page 7-125) 

 

node[N].setglobal() 
This function sets the value of a global variable. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

node[N].setglobal(name, value) 
 

N The node number of this instrument (1 to 64) 
name The global variable name to set 
value The value to assign to the variable 

 

Details 

From a remote node, use this function to assign the given value to a global variable. 
Do not use this command to create or set the value of a global variable from the local node (set the 
global variable directly instead). This command should only be used from a remote master when 
controlling this instrument over a TSP-Link®. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-127 

 

Example 
 

node[3].setglobal("x", 5) Sets the global variable x on node 3 to the value of 5. 

Also see 

node[N].getglobal() (on page 7-120) 
Using TSP to run test scripts simultaneously (on page 6-48)  

 

localnode.showerrors 
This attribute sets whether or not the instrument automatically sends generated errors. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Power cycle Not saved 0 (disabled) 
 

Usage 

errorMode = localnode.showerrors 
localnode.showerrors = errorMode 
 

errorMode Enables (1) or disables (0) the show errors state 
 

Details 

If this attribute is set to 1, the instrument automatically sends any generated errors stored in the error 
queue, and then clears the queue. Errors are processed after executing a command message (just 
before issuing a prompt, if prompts are enabled). 
If this attribute is set to 0, errors are left in the error queue and must be explicitly read or cleared. 
When using this command from a remote node, localnode should be replaced with the node 
reference, for example, node[5].showerrors. 

 

Example 
 

localnode.showerrors = 1 Enables sending of generated errors. 

Also see 

localnode.prompts (on page 7-123) 
 

makegetter() 
This function creates a function to get the value of an attribute. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

getter = makegetter(table, attributeName) 
 

getter The return value 
table Read-only table where the attribute is located 
attributeName A string representing the name of the attribute 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-128 707B-901-01 Rev. B / January 2015 

 

Details 

This function is useful for aliasing attributes to improve execution speed. Calling the function created 
with makegetter() executes faster than accessing the attribute directly. 
Creating a getter function is only useful if it is going to be called several times. Otherwise, the 
overhead of creating the getter function outweighs the overhead of accessing the attribute directly. 

Example 
   

getRule = makegetter(channel, "connectrule") 
-- (intervening code) 
r = getrule() 

Creates a getter function called 
getRule. 
When getRule() is called, it 
returns the value of connectrule.  

Also see 

makesetter() (on page 7-128) 
 

makesetter() 
This function creates a function that, when called, sets the value of an attribute. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

setter = makesetter(table, attributeName) 
 

setter Function that sets the value of the attribute 
table Read-only table where the attribute is located 
attributeName The string name of the attribute 

 

Details 

This function is useful for aliasing attributes to improve execution speed. Calling the setter function 
will execute faster than accessing the attribute directly. 
Creating a setter function is only useful if it is going to be called several times. If you are not calling 
the setter function several times, it is more efficient to access the attribute directly.  

Example 
 

setRule = makesetter(channel, "connectrule") 
r = setrule(channel.BREAK_BEFORE_MAKE) 

Creates a setter function called 
setRule. 
When setRule() is called, it 
configures the setting for 
connectrule. In this example, 
the connection rule is set to 
break-before-make. 

Also see 

makegetter() (on page 7-127) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-129 

 

memory.available() 
This function reads and returns the amount of memory that is available in the instrument overall for storing user 
scripts and channel patterns. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

memoryAvailable = memory.available() 
 

memoryAvailable Comma-delimited string with percentages for available memory; the format is 
systemMemory, scriptMemory, patternMemory, where: 
• systemMemory: The percentage of memory available in the instrument 
• scriptMemory: The percentage of memory available in the instrument to store 

user scripts 
• patternMemory: The percentage of memory available in the instrument to store 

channel patterns 
 

Details 

Use this function to view the available memory in the overall instrument as well as the memory 
available for storing user scripts and channel patterns. 
The response to this function is a single string that returns the overall instrument memory available, 
script memory available, and channel pattern memory available as comma-delimited percentages. 

 

Example: Available memory 
 

memoryAvailable = memory.available() 
print(memoryAvailable) 

Reads and returns the amount of memory available 
in the instrument. 
Output: 
51.56, 92.84, 100.00 
You can also use: 
print(memory.available()) 

 
 

Example: Used and available memory 
 

print("Memory used:", memory.used()) 
print("Memory available: ", 

memory.available())  

Reads and returns the amount memory used and 
memory available percentages. 
Output: 
Memory used: 69.14, 0.16, 12.74 
Memory available: 30.86, 99.84, 87.26 

Also see 

memory.used() (on page 7-130) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-130 707B-901-01 Rev. B / January 2015 

 

memory.used() 
This function reports the amount of memory used in the instrument overall and for user scripts, and storing 
channel patterns. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

memoryUsed = memory.used() 
 

memoryUsed A comma-delimited string with percentages for used memory; the format is 
systemMemory, scriptMemory, patternMemory, where: 
• systemMemory: The percentage of memory used in the instrument 
• scriptMemory: The percentage of memory used in the instrument to 

store user scripts 
• patternMemory: The percentage of memory used in the instrument to 

store channel patterns 

Details 

Use this function to view the used memory in the overall instrument, as well as the memory used for 
storing user scripts and channel patterns. 
The response to this function is a single string that shows the overall instrument memory used, as 
well as the script memory used and channel pattern memory used as comma-delimited percentages. 

Example 
 

MemUsed = memory.used() 
print(MemUsed) 

Reads the memory used in the instrument and 
returns  out the percentages. 
Output: 
69.14, 0.16, 12.74 

Also see 

memory.available() (on page 7-129) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-131 

 

opc() 
This function sets the operation complete status bit when all overlapped commands are completed. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

opc() 

Details 

This function causes the operation complete bit in the Standard Event Status Register to be set when 
all previously started local overlapped commands are complete.  
Note that each node independently sets its operation complete bits in its own status model. Any 
nodes that are not actively performing overlapped commands set their bits immediately. All remaining 
nodes set their own bits as they complete their own overlapped commands. 

Example 
 

opc() 
waitcomplete() 
print("1") 

Output: 
1 

Also see 

Status model (on page C-1, on page C-1) 
waitcomplete() (on page 7-242) 

 

print() 
This function generates a response message. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

print(value1) 
print(value1, value2) 
print(value1, ..., valueN) 
 

value1 The first argument to output 

value2 The second argument to output 
valueN The last argument to output 
... One or more values separated with commas 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-132 707B-901-01 Rev. B / January 2015 

 

Details 

TSP-enabled instruments do not have inherent query commands. Like any other scripting 
environment, the print() command and other related print() commands generate output. The 
print() command creates one response message. 
The output from multiple arguments is separated with a tab character. 
Numbers are printed using the format.asciiprecision attribute. If you want use Lua formatting, 
print the return value from the tostring() function. 

 

Example 1 
 

x = 10 
print(x) 

Example of an output response message: 
1.0000000e+01 
Note that your output might be different if you set 
your ASCII precision setting to a different value. 

 

Example 2 
 

x = true 
print(tostring(x)) 

Example of an output response message: 
true 

 

Also see 

format.asciiprecision (on page 7-89) 
 

printbuffer() 
This function prints data from tables or reading buffer subtables. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

printbuffer(startIndex, endIndex, bufferVar) 
printbuffer(startIndex, endIndex, bufferVar, bufferVar2) 
printbuffer(startIndex, endIndex, bufferVar, ..., bufferVarN) 
 

startIndex Beginning index of the buffer to print; this must be more than one 
and less than endIndex 

endIndex Ending index of the buffer to print; this must be more than 
startIndex and less than the index of the last entry in the 
tables 

bufferVar Name of first table or reading buffer subtable to print; may be a 
default buffer (defbuffer1 or defbuffer2) or a user-defined 
buffer 

bufferVar2 Second table or reading buffer subtable to print; may be a default 
buffer (defbuffer1 or defbuffer2) or a user-defined buffer 

bufferVarN The last table or reading buffer subtable to print; may be a default 
buffer (defbuffer1 or defbuffer2) or a user-defined buffer 

... One or more tables or reading buffer subtables separated with 
commas 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-133 

 

Details 

If startIndex is set to less than 1 or if endIndex is more than the size of the index, 9.910000e+37 
is returned for each value outside the allowed index and an event is generated. 
If overlapped commands use the specified reading buffers and the commands are not complete (at 
least to the specified index), this function outputs data as it becomes available. 

 

When there are outstanding overlapped commands to acquire data, n refers to the index that the last 
entry in the table has after all the readings have completed. 
If you pass a reading buffer instead of a reading buffer subtable, the default subtable for that reading 
buffer is used. 
This command generates a single response message that contains all data. 
The format.data attribute controls the format of the response message. 
You can use the bufferVar attributes that are listed in the following table with the print buffer 
command. For example, if testData is the buffer, you can use testData.dates attribute to print 
the date of each reading in the testData buffer. 
You can use bufferVar.n to retrieve the number of readings in the specified reading buffer. 

Example 1 
 

reset() 
testData = buffer.make(200) 
format.data = format.ASCII 
format.asciiprecision = 6 
trigger.model.load("SimpleLoop", 6, 0, testData) 
trigger.model.initiate() 
waitcomplete() 
printbuffer(1, testData.n, testData.readings, testData.units, 

testData.relativetimestamps) 

Reset the instrument. 
Set the data format and ASCII precision. 
Use trigger model SimpleLoop to create a 6 count loop with no delays that stores data in the reading buffer 
testBuffer. 
Start the trigger model, wait for the commands to complete, and output the readings. 
Use of testData.n (bufferVar.n) indicates that the instrument should output all readings in the reading 
buffer. In this example, testBuffer.n equals 6. 
Example of output data:  
1.10458e-11, Amp DC, 0.00000e+00, 1.19908e-11, Amp DC, 1.01858e-01, 1.19908e-11, Amp DC, 
2.03718e-01, 1.20325e-11, Amp DC, 3.05581e-01, 1.20603e-11, Amp DC, 4.07440e-01, 1.20325e-
11, Amp DC, 5.09299e-01 

 

Example 2 
 

for x = 1, testData.n do 
printbuffer(x,x,testData, testData.units, testData.relativetimestamps) 
end 

Using the same buffer created in Example 1, output the readings, units and relative timestamps on a separate 
line for each reading. 
1.10458e-11, Amp DC, 0.00000e+00 
1.19908e-11, Amp DC, 1.01858e-01 
1.19908e-11, Amp DC, 2.03718e-01 
1.20325e-11, Amp DC, 3.05581e-01 
1.20603e-11, Amp DC, 4.07440e-01 
1.20325e-11, Amp DC, 5.09299e-01 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-134 707B-901-01 Rev. B / January 2015 

 

Also see 

format.asciiprecision (on page 7-89) 
format.byteorder (on page 7-89) 
format.data (on page 7-90) 
printnumber() (on page 7-134) 

 

printnumber() 
This function prints numbers using the configured format. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

printnumber(value1) 
printnumber(value1, value2) 
printnumber(value1, ..., valueN) 
 

value1 First value to print in the configured format 
value2 Second value to print in the configured format 
valueN Last value to print in the configured format 
... One or more values separated with commas 

 

Details 

There are multiple ways to use this function, depending on how many numbers are to be printed. 
This function prints the given numbers using the data format specified by format.data and 
format.asciiprecision. 

 

Example 
 

format.asciiprecision = 10 
x = 2.54 
printnumber(x) 
format.asciiprecision = 3 
printnumber(x, 2.54321, 3.1) 

Configure the ASCII precision to 10 and set x to 
2.54. 
Read the value of x based on these settings. 
Change the ASCII precision to 3. 
View how the change affects the output of x and 
some numbers. 
Output: 
2.54000000000e+00 
2.54e+00, 2.54e+00, 3.10e+00 

Also see 

format.asciiprecision (on page 7-89) 
format.byteorder (on page 7-89) 
format.data (on page 7-90) 
print() (on page 7-131) 
printbuffer() (on page 7-132) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-135 

 

reset() 
This function resets commands to their default settings. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

reset() 
reset(system) 
 

system true: If the node is the master, the entire system is reset 
false: Only the local group is reset 

 

Details 

The reset() command in its simplest form resets the entire TSP-enabled system, including the 
controlling node and all subordinate nodes. 
If you want to reset a specific instrument, use either the localnode.reset() or 
node[X].reset() command. Use the localnode.reset() command for the local instrument. 
Use the node[X].reset() command to reset an instrument on a subordinate node. 
When no value is specified for system, the default value is true. 
You can only reset the entire system using reset(true) if the node is the master. If the node is not 
the master node, executing this command generates an error. 

 

Example 
 

reset(true) If the node is the master node, the entire system is 
reset; if the node is not the master node, an error is 
generated. 

 

Also see 

localnode.reset() (on page 7-124) 
 

scan.abort() 
This function aborts a running background scan. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    
 

Usage 

scan.abort() 
 

Details 

If no scan is running, the call to this function is ignored. 
 

When a scan is aborted, the channels remain in the opened or closed states that they were in when 
the scan was aborted. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-136 707B-901-01 Rev. B / January 2015 

 

Example 
 

scan.background() 
scan.abort() 

Starts background scan, and then aborts the 
scan. 

Also see 

scan.background() (on page 7-139) 
Scanning and triggering (on page 3-1) 

 

scan.add() 
This function adds a scan step to the scan list. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes    
 

Usage 

scan.add(channelList) 
channelList String specifying channels to add using normal channel list syntax 

 
 

Details 

Use this function to add channels and channel patterns to the present scan list. If the scan list does 
not exist, it also creates a scan list. See scan.create() for information about creating a scan list. 
Channels and channel patterns added using the scan.add() function are added to the end of the 
present list (appended) in the same order as specified in channelList. Specifying multiple channels 
in channelList adds multiple steps to the scan. 
If an error is encountered as channels are added to the list, subsequent channels in that channel list 
will not be added. 

 

Example 1 
 

scan.create() 
 
 
for column = 1,5 do 
 
   

scan.add(channel.createspecifier(1,1,column
)) 

 
 
end 

Replaces the active scan list with an empty 
scan list. 
 
Loops through columns 1 to 5. 
 
Adds five channels to the scan list using the 
channel.createspecifier() command. 
The scan list now has row 1, columns 1 to 5 
on slot 1 as the first five steps. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-137 

 

Example 2 
 

scan.create("1A01:1A08") 
 
 
scan.add("1A10") 
 
 
 
scan.add("1A09") 

Replaces the active scan list with an empty 
scan list, and then adds row A, columns 1 
through 8 on slot 1 to the new scan list. 
 
Adds row A, column 10 on slot 1 to the end of 
the scan list. 
 
Adds row A, column 9 on slot 1 to the end of 
the scan list. 
 
Scan list now includes channels 1A01 
through 1A10, with channels 1A01 through 
1A08 in order, followed by channel 1A10, and 
then channel 1A09. 

 

Example 3 
 

scan.create("") Clears the old scan list and creates a new 
empty scan list. 

 
 

Also see 

scan.create() (on page 7-141) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-138 707B-901-01 Rev. B / January 2015 

 

scan.addimagestep() 
This function allows you to include multiple channels in a single scan step. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.addimagestep(channelList) 
channelList String specifying a list of channels 

Details 

This function adds a list of channels to be closed simultaneously in a single step of a scan. 
Example 

scan.create() 
scan.add("1D01") 
scan.addimagestep("1A01, 1B01, 1C03") 
scan.add("1F03") 
scan.addimagestep("1A03, 1B03, 1C03") 
scan.addimagestep("1A05, 1B05, 1C03") 
scan.addimagestep("1A07, 1B07, 1C03") 
scan.addimagestep("1A09, 1B09, 1C03") 
print(scan.list()) 

Generate a scan list that has multiple 
steps, with some steps that include 
multiple channels. 
 
Output: 
Init) OPEN... 
   1) STEP: 1D01 
     CLOSE: 1D01 
   2) STEP: 1A01, 1B01, 1C03 
      OPEN: 1D01 
     CLOSE: 1A01 1B01 1C03 
   3) STEP: 1F03 
      OPEN: 1A01 1B01 1C03 
     CLOSE: 1F03 
   4) STEP: 1A03, 1B03, 1C03 
      OPEN: 1F03 
     CLOSE: 1A03 1B03 1C03 
   5) STEP: 1A05, 1B05, 1C03 
      OPEN: 1A03 1B03 
     CLOSE: 1A05 1B05 
   6) STEP: 1A07, 1B07, 1C03 
      OPEN: 1A05 1B05 
     CLOSE: 1A07 1B07 
   7) STEP: 1A09, 1B09, 1C03 
      OPEN: 1A07 1B07 
     CLOSE: 1A09 1B09 

Also see 

scan.add() (on page 7-136) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-139 

 

scan.background() 
This function starts a scan and runs the scan in the background. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

state, scanCount, stepCount = scan.background() 
 

state The result of scanning: 
scan.EMPTY or 0 
scan.BUILDING or 1 
scan.RUNNING or 2 
scan.ABORTED or 3 
scan.FAILED or 4 
scan.FAILED_INIT or 5 
scan.SUCCESS or 6 

scanCount The present number of scans completed 

stepCount The present number of steps completed 
 

Details 

Before using this command, use scan.create() and scan.add()or scan.addimagestep() to 
set up a scan list. 
When the scan is run in the background, you must use the scan.state() function to check the 
status of the scan. 

Example 

scan.background() Runs a scan in the background. 

Also see 

scan.add() (on page 7-136) 
scan.create() (on page 7-141) 
scan.execute() (on page 7-142) 
scan.list() (on page 7-143) 
scan.state() (on page 7-148) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-140 707B-901-01 Rev. B / January 2015 

 

scan.bypass 
This attribute indicates whether the first channel of the scan waits for the channel stimulus event to be satisfied 
before closing. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes System reset 
Scan reset 

Create configuration script 1 (scan.ON) 

Usage 

bypass = scan.bypass 
scan.bypass = bypass 
 

bypass The state of the bypass. Set to one of the following values: 
scan.OFF or 0: Disabled 
scan.ON or 1: Enabled 

Details 

When bypass is ON and the scan.trigger.arm.stimulus is set to a non-zero value, the first 
channel of the scan closes (the scan.trigger.channel.stimulus setting is ignored). 
For other channels (other than the first), the channel stimulus must be satisfied before the channel 
action takes place. 
When bypass is OFF, every channel (including the first) must satisfy the 
scan.trigger.channel.stimulus setting before the channel action occurs for that step. 

Example 
 

scan.bypass = scan.OFF 
print(scan.bypass) 

Disables the bypass option for scanning and 
displays the present bypass state. 
Output: 
0.000000000e+000 

Also see 

scan.trigger.arm.stimulus (on page 7-150) 
scan.trigger.channel.stimulus (on page 7-153) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-141 

 

scan.create() 
This function deletes the existing scan list and creates a new list of channels and channel patterns to scan. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.create(channelList) 
channelList String specifying channels to add 

Details 

The existing scan list is lost after calling this function. 
The items in channelList are scanned in the order listed. 
If a forbidden channel is included in a range of channels or slot parameter (such as slot 1), the 
forbidden channel is ignored and no error is generated. If a forbidden channel is individually specified 
in the channel list, an error is generated. 
If an error occurs, the scan list of channels or channel patterns is cleared, even though no new scan 
list is created. 
The function scan.reset() clears the list. To clear the scan list without performing a scan reset, 
send an empty string for the channelList parameter. 

Example 1 
 

scan.create("1A01:1A10") Replaces the active scan list with an empty 
scan list, and then adds channels 1A01 
through 1A10 on slot 1. 

 

Example 2 
 

scan.create() 
 
for column = 1, 10 do 
   

scan.add(channel.createspecifier(1,1,column
)) 

 
 
end 

Replaces the active scan list with an empty 
scan list. 
Loops through column 1 to 10 on row 1 of slot 
1 to add ten channels to the scan list. The 
channel.createspecifier() command 
generates the parameters. 
The scan list now has, in order, row 1, 
columns 1 through 10, on slot 1. 

 

Also see 

scan.add() (on page 7-136) 
scan.reset() (on page 7-146) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-142 707B-901-01 Rev. B / January 2015 

 

scan.execute() 
This function starts the scan immediately in the foreground with a configured scan list. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scanState, scanCount, stepCount = scan.execute() 
 

scanState The result of scanning: 
scan.EMPTY or 0 
scan.BUILDING or 1 
scan.RUNNING or 2 
scan.ABORTED or 3 
scan.FAILED or 4 
scan.FAILED_INIT or 5 
scan.SUCCESS or 6 

scanCount The present number of scans that have completed 
stepCount The present number of steps have completed 

 

Details 

Before using this command, use scan.create() and scan.add() or scan.addimagestep() to 
set up a scan list. 
Execution runs until the scan is complete or until the  abort command is sent.  
Because this function waits for the scan to complete, the scan.state() function cannot be used to 
see the current status of scanning. 

Example 

scan.execute() Runs a scan immediately. 

Also see 

scan.add() (on page 7-136) 
scan.background() (on page 7-139) 
scan.create() (on page 7-141) 
scan.list() (on page 7-143) 
scan.state() (on page 7-148) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-143 

 

scan.list() 
This function queries the active scan list. 

Type TSP-Link accessible Affected by Where saved Default value 

Function Yes Instrument reset 
Channel reset 
Scan reset 
Recall setup 
Change of channel or scan setting 

Create configuration script 
Save setup 

Empty list 

Usage 

scanList = scan.list() 
 

scanList A string that lists the existing scan step information 

Details 

This function lists the existing scan list. 

When you change a channel or scan attribute for an existing scan list item, the scan list is  recreated 
based on this change. If the scan list cannot be rebuilt, an error is generated and the scan list is lost. 

To avoid unintentional changes to an existing scan list, configure channel and scan settings before  
using the commands scan.add(), scan.addimagestep(), and scan.create()) to build a scan 
list. 

If the scan list is empty, the string "Empty Scan" is returned. Otherwise, the string lists each step in 
the scan along with its information for step, open, and close (see the example below). 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-144 707B-901-01 Rev. B / January 2015 

 

Example 
 

scan.create("1A07:1B03") 
print(scan.list()) 

Populate the scan list with the function 
scan.create("1A07:1B03"), then initiate 
the scan list to be output. 
Outputs the existing scan list. 
Output: 
Init) OPEN... 
   1) STEP: 1A07 
     CLOSE: 1A07 
   2) STEP: 1A08 
      OPEN: 1A07 
     CLOSE: 1A08 
   3) STEP: 1A09 
      OPEN: 1A08 
     CLOSE: 1A09 
   4) STEP: 1A10 
      OPEN: 1A09 
     CLOSE: 1A10 

    5) STEP: 1A11 
      OPEN: 1A10 
     CLOSE: 1A11 
   6) STEP: 1A12 
      OPEN: 1A11 
     CLOSE: 1A12 
   7) STEP: 1B01 
      OPEN: 1A12 
     CLOSE: 1B01 
   8) STEP: 1B02 
      OPEN: 1B01 
     CLOSE: 1B02 
   9) STEP: 1B03 
      OPEN: 1B02 
     CLOSE: 1B03  

Also see 

scan.create() (on page 7-141) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-145 

 

scan.mode 
This attribute controls the scan mode setting. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes System reset 
Scan reset 

Create configuration script 0 (scan.MODE_OPEN_ALL) 

Usage 

scanModeSetting = scan.mode 
scan.mode = scanModeSetting 
 

scanModeSetting The present scan mode setting. Set to one of the following values: 
• scan.MODE_OPEN_ALL or 0 
• scan.MODE_OPEN_SELECTIVE or 1: See Details 
•  

Details 

When this attribute is set to scan.MODE_OPEN_ALL, all channels on all slots are opened before a 
scan starts.  
When this attribute is set to scan.MODE_OPEN_SELECTIVE, an intelligent open is performed: 

• All channels involved in scanning are opened 
• Closed channels not involved in scanning remain closed during the scan 

Example 
 

scan.mode = scan.MODE_OPEN_SELECTIVE Sets the scan mode setting to open 
selective. 

Also see 

scan.reset() (on page 7-146) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-146 707B-901-01 Rev. B / January 2015 

 

scan.reset() 
This function resets the trigger model and scan list settings to their factory default settings. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.reset() 
 

Details 

When scan.reset() is sent, the trigger model and scan settings that are reset to the factory 
defaults are: 

• scan.bypass 
• scan.mode 
• scan.scancount 
• scan.trigger.arm.stimulus 
• scan.trigger.channel.stimulus 

In addition, the scan list is cleared. 

Sending this function only affects the trigger model and scan list settings. To reset all instrument 
settings to factory default settings, use the reset() command. 

Example 
 

scan.reset() Performs a reset on the trigger model and scan 
settings. 

Also see 

channel.reset() (on page 7-40) 
reset() (on page 7-135) 
scan.bypass (on page 7-140) 
scan.mode (on page 7-145) 
scan.scancount (on page 7-147) 
scan.trigger.arm.stimulus (on page 7-150) 
scan.trigger.channel.stimulus (on page 7-153) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-147 

 

scan.scancount 
This attribute sets the scan count in the trigger model. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Scan reset 

Create configuration script 1 

Usage 

scanCount = scan.scancount 
scan.scancount = scanCount 
 

scanCount The present scan count value (1 to 2,000,000,000) 

Details 

The scan count attribute setting indicates how many times the scan list is iterated through before the 
scan completes. 
During a scan, the instrument iterates through the arm layer of the trigger model the specified number 
of times. After performing the specified number of iterations, the instrument returns to an idle state. 

Example 
 

scan.scancount = 5 Sets the scan count to 5. 

Also see 

Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-148 707B-901-01 Rev. B / January 2015 

 

scan.state() 
This function provides the present state of a running background scan. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scanState, scanCount, stepCount = scan.state() 
scanState The present state of the scan running in the background. Possible states include: 

scan.EMPTY or 0 
scan.BUILDING or 1 
scan.RUNNING or 2 
scan.ABORTED or 3 
scan.FAILED or 4 
scan.FAILED_INIT or 5 
scan.SUCCESS or 6 

scanCount The current number of scans that have completed 
stepCount The current number of steps that have completed 

Details 

scanCount is the number of the current iteration through the scan portion of the trigger model. This 
number does not increment until the scan begins. Therefore, if the instrument is waiting for an input to 
trigger a scan start, the scan count represents the previous number of scan iterations. If no scan has 
begun, the scan count is zero (0). 
stepCount is the number of times the scan has completed a pass through the channel action portion 
of the trigger model. This number does not increment until after the action completes. Therefore, if the 
instrument is waiting for an input to trigger a channel action, the step count represents the previous 
step. If no step has yet completed, the step count is zero. If the step count has yet to complete the 
first step in a subsequent pass through a scan, the scan count represents the last step in the previous 
scan pass. 

 

Example 
 

scan.background() 
scanState, scanCount, stepCount = scan.state() 
print(scanState) 
 

Runs a scan in the background. 
Check the present scan state. 
View value of scanState. 
Output shows that scan is running: 
2.0000000e+00 
 

 

Also see 

scan.background() (on page 7-139) 
scan.mode (on page 7-145) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-149 

 

scan.stepcount 
This attribute contains the number of steps in the present scan. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 
 

Usage 

scanStepCount = scan.stepcount 
 

scanStepCount The present step count value 
 

Details 

This is set by the number of steps in the active scan list. The value of this attribute is initially 
determined when the scan is created. Adding steps with the scan.create(), 
scan.addimagestep(), and scan.add() functions updates this attribute's value. 

 

Example 
 

print(scan.stepcount) Responds with the present step count. 
Output assuming there are five steps in the 
scan list: 
5.0000000e+00 

 

Also see 

scan.add() (on page 7-136) 
scan.addimagestep() (on page 7-138) 
scan.create() (on page 7-141) 
Scanning and triggering (on page 3-1) 

 

scan.trigger.arm.clear() 
This function clears the arm event detector. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.trigger.arm.clear() 

Details 

This function sets the trigger model's arm event detector to the undetected state. 

Example 
 

scan.trigger.arm.clear() Clears the arm event detector. 

Also see 

scan.trigger.arm.set() (on page 7-150) 
scan.trigger.arm.stimulus (on page 7-150) 
Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-150 707B-901-01 Rev. B / January 2015 

 

scan.trigger.arm.set() 
This function sets the arm event detector to the detected state. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.trigger.arm.set() 

Details 

This function sets the arm event detector of the trigger model to the detected state. 

Example 
 

scan.trigger.arm.set() Sets the arm event detector to the detected 
state. 

Also see 

scan.trigger.arm.clear() (on page 7-149) 
scan.trigger.arm.stimulus (on page 7-150) 
Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 

scan.trigger.arm.stimulus 
This attribute determines which event starts the scan. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 
Scan reset 

Create configuration script 
Save setup 

0 

 

Usage 

eventID = scan.trigger.arm.stimulus 
scan.trigger.arm.stimulus = eventID 
 

eventID Trigger stimulus used for the channel action (arm layer); see Details 
 

Details 

This attribute selects which events cause the arm event detector to enter the detected state. 
Set this attribute to 0 to start the scan without waiting for an event. 
eventID may be one of the following trigger event IDs. 

• digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the configuration of 
the line) on the digital input line. 

• display.trigger.EVENT_ID: The trigger key on the front panel is pressed. 
• trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the active command 

interface, a GET message will also generate this event. 
• trigger.blender[N].EVENT_ID: A combination of configured events has occurred 
• trigger.timer[N].EVENT_ID: A delay expired. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-151 

 

• tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the configuration 
of the line) on the tsplink trigger line. 

• lan.trigger[N].EVENT_ID: Event identifier use to route the LAN trigger to other subsystems 
(using stimulus properties). 

• scan.trigger.EVENT_SCAN_READY: Scan Ready Event. 
• scan.trigger.EVENT_SCAN_START: Scan Start Event. 
• scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event. 

 

• scan.trigger.EVENT_SCAN_COMP: Scan Complete Event. 

scan.trigger.EVENT_IDLE: Idle Event. 
 

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the 
stimulus value rather than the numeric value. Doing this will make the code compatible for future 
upgrades. 

 

Example 1 
 

scan.trigger.arm.stimulus = 
scan.trigger.EVENT_SCAN_READY 

Sets trigger stimulus of the arm 
event detector to scan ready 
event. 

 

Example 2 
 

scan.trigger.arm.stimulus = 0 The scan begins immediately. 
 

Example 3 
 

scan.trigger.arm.stimulus = digio.trigger[3].EVENT_ID The scan begins when the 
instrument receives a signal 
from digital I/O line 3. 

 

Also see 

scan.trigger.arm.clear() (on page 7-149) 
scan.trigger.arm.set() (on page 7-150) 
Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-152 707B-901-01 Rev. B / January 2015 

 

scan.trigger.channel.clear() 
This function clears the channel event detector. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.trigger.channel.clear() 
 

Details 

This function clears the channel event detector of the trigger model (sets it to the undetected state). 

Example 
 

scan.trigger.channel.clear() Clears the channel event detector. 

Also see 

scan.trigger.channel.set() (on page 7-152) 
scan.trigger.channel.stimulus (on page 7-153) 
Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 

scan.trigger.channel.set() 
This function sets the channel event detector to the detected state. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.trigger.channel.set() 
 

Details 

This function sets the channel event detector of the trigger model to the detected state. 

Example 
 

scan.trigger.channel.set() Sets the channel event detector of the trigger 
model to the detected state. 

Also see 

scan.trigger.channel.clear() (on page 7-152) 
scan.trigger.channel.stimulus (on page 7-153) 
Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-153 

 

scan.trigger.channel.stimulus 
This attribute determines which trigger events cause the channel actions to occur. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Scan reset 

Create configuration 
script 

scan.trigger.EVENT_CHANNEL_READ
Y 

 

Usage 

eventID = scan.trigger.channel.stimulus 
scan.trigger.channel.stimulus = eventID 
 

eventID Trigger stimulus used for the channel action; see Details for possible trigger 
event IDs 

 

Details 

This attribute selects which events cause the channel event detector to enter the detected state. Set 
this attribute to 0 to start the channel action immediately at the default setting. 
Set eventID to one of the existing trigger event IDs shown in the following table. 
 

Trigger event IDs 

Trigger event ID Description 

channel.trigger[N].EVENT_ID or 41 
to 48 

The trigger event generated by the channel trigger N. 

digio.trigger[N].EVENT_ID or 1 to 
14 

An edge (either rising, falling, or either based on the 
configuration of the line) on the digital input line. 

display.trigger.EVENT_ID or 39 The trigger key (TRIG) on the front panel is pressed. 

dmm.trigger.EVENT_LIMIT1_HIGH or 
53 

A DMM trigger event that indicates a measurement 
has exceed the high limit value on limit 1. 

dmm.trigger.EVENT_LIMIT1_LOW or 
52 

A DMM trigger event that indicates a measurement 
has exceed the low limit value on limit 1. 

dmm.trigger.EVENT_LIMIT2_HIGH or 
55 

A DMM trigger event that indicates a measurement 
has exceed the high limit value on limit 2. 

dmm.trigger.EVENT_LIMIT2_LOW or 
54 

A DMM trigger event that indicates a measurement 
has exceed the low limit value on limit 2. 

 

trigger.EVENT_ID or 40 A *trg message on the active command interface. If 
GPIB is the active command interface, a GET 
message also generates this event. 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-154 707B-901-01 Rev. B / January 2015 

 

trigger.blender[N].EVENT_ID or 58 
to 59 

A combination of events has occurred. 

trigger.timer[N].EVENT_ID or 20 
to 23 

A delay expired. 

tsplink.trigger[N].EVENT_ID or 17 
to 19 

An edge (either rising, falling, or either based on the 
configuration of the line) on the TSP-Link trigger line. 

lan.trigger[N].EVENT_ID or 29 to 
36 

A LAN trigger event has occurred. 

scan.trigger.EVENT_SCAN_READY or 
24 

Scan ready event. 

scan.trigger.EVENT_SCAN_START or 
25 

Scan start event. 

scan.trigger.EVENT_CHANNEL_READY 
or 28 

Channel ready event. 

scan.trigger.EVENT_MEASURE_COMP 
or 56 

Measure complete event. 

scan.trigger.EVENT_SEQUENCE_COMP 
or 50 

Sequence complete event. 

scan.trigger.EVENT_SCAN_COMP or 
26 

Scan complete event. 

scan.trigger.EVENT_IDLE or 27 Idle event. 

schedule.alarm[N].EVENT_ID or 37 
to 38 

Trigger event generated by the alarm N. 

Use one of the text trigger event IDs (for example, digio.trigger[N].EVENT_ID) to set the 
stimulus value rather than the numeric value. Doing this will make the code compatible for future 
upgrades. 

Example 1 
 

scan.trigger.channel.stimulus = 
scan.trigger.EVENT_SCAN_START 

Sets the trigger stimulus of 
the channel event detector 
to scan start event. 

 
 

Example 2 
 

scan.trigger.channel.stimulus = 0 
print(scan.trigger.channel.stimulus) 
 

Starts the channel action 
immediately after the Scan 
Start Event. This also 
resets the stimulus to the 
default. 
Output: 
5.000000000e+01 

 

Also see 

scan.trigger.channel.clear() (on page 7-152) 
scan.trigger.channel.set() (on page 7-152) 
Trigger model (on page 3-1) 
Scanning and triggering (on page 3-1) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-155 

 

scan.trigger.clear() 
This function clears the trigger model. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

scan.trigger.clear() 

Details 

This function sets the arm and channel event detectors of the trigger model to the undetected state. 

Example 
 

scan.trigger.clear() Clears the trigger model. 

Also see 

scan.trigger.channel.set() (on page 7-152) 
scan.trigger.channel.stimulus (on page 7-153) 
Scanning and triggering (on page 3-1) 
Trigger model (on page 3-1) 

 

script.anonymous 
This is a reference to the anonymous script. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) No See Details See Details Not applicable 
 

Usage 

scriptVar = script.anonymous 
 

scriptVar The name of the variable that references the script 
 

Details 

You can use the script.anonymous script like any other script. Also, you can save the anonymous 
script as a user script by giving it a name. 
This script is replaced by loading a script with the loadscript  or loadandrunscript commands 
when they are used without a name.  

 

Example 1 
 

script.anonymous.list() Displays the content of the anonymous 
script. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-156 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

print(script.anonymous.source) Retrieves the source of the anonymous 
script. 

Also see 

scriptVar.autorun (on page 7-160) 
scriptVar.list() (on page 7-162) 
scriptVar.name (on page 7-162) 
scriptVar.run() (on page 7-163) 
scriptVar.save() (on page 7-164) 
scriptVar.source (on page 7-165) 

 

script.delete() 
This function deletes a script from nonvolatile memory. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

script.delete(scriptName) 
 

scriptName The string that represents the name of the script 

Example 
 

script.delete("test8") Deletes a user script named "test8" from 
nonvolatile memory. 

Also see 

Delete user scripts from the instrument (on page 6-41) 
scriptVar.save() (on page 7-164) 

 

script.new() 
This function creates a script. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

scriptVar = script.new(code) 
scriptVar = script.new(code, name) 
 

scriptVar The name of the variable that will reference the script 
code A string containing the body of the script 
name The name of the script 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-157 

 

Details 

The name parameter is the name that is added to the script.user.scripts table. If name is not 
given, an empty string will be used, and the script will be unnamed. If the name already exists in 
script.user.scripts, the existing script's  name attribute is set to an empty string before it is 
replaced by the new script. 

 

Note that name is the value that is used for the instrument front panel display. If this value is not 
defined, the script will not be available from the instrument front panel.  
You must save the new script into nonvolatile memory to keep it when the instrument is turned off. 

 

Example 1 
 

myTest8 = script.new( 
   "display.clear() display.settext('Hello from myTest8')", "myTest8") 
myTest8() 

Creates a new script referenced by the variable myTest8 with the name "myTest8". 
Runs the script. The instrument displays "Hello from myTest8". 

 

Example 2 
 

autoexec = script.new( 
   "display.clear() display.settext('Hello from autoexec')", 'autoexec') 

Creates a new autoexec script that clears the display when the instrument is turned on and displays 
"Hello from autoexec". 

Also see 

Create a script using the script.new() command (on page 6-35) 
Global variables and the script.user.scripts table (on page 6-33) 
Named scripts (on page 6-4) 
scriptVar.save() (on page 7-164) 
script.newautorun() (on page 7-158) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-158 707B-901-01 Rev. B / January 2015 

 

script.newautorun() 
This function is identical to the script.new() function, but it creates a script with the autorun attribute set to 
"yes". 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

scriptVar = script.newautorun(code) 
scriptVar = script.newautorun(code, name) 
 

scriptVar The name of the variable that will reference the script 
code A string containing the body of the script 
name The name of the script 

Details 

The script.newautorun() function is identical to the script.new()function, except that the 
autorun attribute of the script is set to yes. The script is also automatically run immediately after it is 
created. 

Example 
 

NewAuto = script.newautorun("print('Hello from new auto run command')", 
'NewAuto') 

print(NewAuto.autorun) 
print(NewAuto.name) 

Creates a new script called NewAuto that automatically has the autorun attribute set to yes after it is 
created. The name attribute's value is set to "NewAuto". 
Output: 
Hello from new auto run command 
yes 
NewAuto 

 

Also see 

Create a script using the script.new() command (on page 6-35) 
Global variables and the script.user.scripts table (on page 6-33) 
Named scripts (on page 6-4) 
script.new() (on page 7-156) 
scriptVar.save() (on page 7-164) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-159 

 

script.restore() 
This function restores a script that was removed from the run-time environment. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

script.restore(name) 
 

name The name of the script to be restored 
 

Details 

This command copies the script from nonvolatile memory into the run-time environment. It also 
creates a global variable with the same name as the name of the script. 

Example 
 

script.restore("test9") Restores a script named "test9" from nonvolatile 
memory. 

Also see 

script.delete() (on page 7-156) 
 

script.run() 
This function runs the anonymous script. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

script.run() 
run() 

Details 

Each time the script.run() command is given, the anonymous script is executed. This script can 
be run using this command many times without having to re-send it.  

Example 
 

run() Runs the anonymous script. 

Also see 

script.anonymous (on page 7-155) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-160 707B-901-01 Rev. B / January 2015 

 

script.user.catalog() 
This function returns an iterator that can be used in a for loop to iterate over all the scripts stored in nonvolatile 
memory. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

for name in script.user.catalog() do body end 
 

name String representing the name of the script 
body Code that implements the body of the for loop to process the names in the catalog 

Details 

Accessing the catalog of scripts stored in nonvolatile memory allows you to process all scripts in 
nonvolatile memory. The entries will be enumerated in no particular order. 
Each time the body of the function executes, name takes on the name of one of the scripts stored in 
nonvolatile memory. The for loop repeats until all scripts have been iterated. 

Example 
 

for name in script.user.catalog() do 
   print(name) 
end 

Retrieve the catalog listing for user scripts. 

Also see 

None 
 

scriptVar.autorun 
This attribute controls the autorun state of a script. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Not applicable See Details See Details 
 

Usage 

scriptVar.autorun = state 
state = scriptVar.autorun 
 

scriptVar The name of the variable that references the script 
state Whether or not the script runs automatically when powered on: 

• "yes" (script runs automatically) 
• "no" (script does not run automatically) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-161 

 

Details 

Autorun scripts run automatically when the instrument is turned on. You can set any number of scripts 
to autorun. 
The run order for autorun scripts is arbitrary, so make sure the run order is not important. 
The default value for scriptVar.autorun depends on how the script was loaded. The default is 
"no" if the script was loaded with loadscript or script.new(). It is "yes" for scripts loaded 
with loadandrunscript or script.newautorun(). 

 

Make sure to save the script in nonvolatile memory after setting the autorun attribute so that the 
instrument will retain the setting. 

 

Example 
 

test5.autorun = "yes" 
test5.save() 

Assume a script named "test5" is in the run-time 
environment. 
The next time the instrument is turned on, "test5" 
script automatically loads and runs. 

 

Also see 

None 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-162 707B-901-01 Rev. B / January 2015 

 

scriptVar.list() 
This function generates a script listing. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

scriptVar.list() 
 

scriptVar The name of variable that references the script 

Details 

This function generates output in the form of a sequence of response messages (one message for 
each line of the script). It also generates output of the script control messages (loadscript or 
loadandrunscript and endscript). 

Example 
 

test7 = script.new("display.clear() display.settext('Hello from my test')",    
"test7") 

test7() 
test7.save() 
test7.list() 

The above example code creates a script named "test7" that displays text on the front panel and lists the 
script with the following output: 
loadscript test7 
display.clear() display.settext("Hello from my test") 
endscript 

Also see 

Retrieve source code one line at a time (on page 6-39) 
 

scriptVar.name 
This attribute contains the name of a script in the run-time environment. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Not applicable Not applicable Not applicable 

Usage 

scriptVar.name = scriptName 
scriptName = scriptVar.name 
 

scriptVar Name of the variable that references the script 
scriptName A string that represents the name of the script 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-163 

 

Details 

When setting the script name, this attribute renames the script that the variable scriptVar 
references. 
This attribute must be either a valid Lua identifier or the empty string. Changing the name of a script 
changes the index that is used to access the script in the script.user.scripts table. Setting the 
attribute to an empty string removes the script from the table completely, and the script becomes an 
unnamed script. 

 

As long as there are variables referencing an unnamed script, the script can be accessed through 
those variables. When all variables that reference an unnamed script are removed, the script will be 
removed from the run-time environment. 
If the new name is the same as a name that is already used for another script, the name of the other 
script is set to an empty string, and that script becomes unnamed.  

 

Changing the name of a script does not change the name of any variables that reference that script. 
The variables will still reference the script, but the names of the script and variables may not match. 

 

Example 
 

test7 = script.new("display.clear() display.settext('Hello from my test')", "") 
test7() 
print(test7.name) 
 
test7.name = "test7" 
print(test7.name) 

 
test7.save() 

This example calls the script.new() function to create a script with no name, runs the script, names the 
script "test7", and then saves the script in nonvolatile memory. 

Also see 

Rename a script (on page 6-37) 
script.new() (on page 7-156) 
scriptVar.save() (on page 7-164) 

 

scriptVar.run() 
This function runs a script. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

scriptVar.run() 
scriptVar() 
 

scriptVar The name of the variable that references the script 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-164 707B-901-01 Rev. B / January 2015 

 

Details 

The scriptVar.run() function runs the script referenced by scriptVar. You can also run the 
script by using scriptVar(). 

 

Example 
 

test8.run() Runs the script referenced by the variable 
test8. 

Also see 

None 
 

scriptVar.save() 
This function saves the script to nonvolatile memory or to a USB flash drive. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

scriptVar.save() 
scriptVar.save(filename) 
 

scriptVar The name of variable that references the script 

filename The file name to use when saving the script to a USB flash drive 

Details 

The scriptVar.save() function saves a script to nonvolatile memory or a USB flash drive. The 
root folder of the USB flash drive has the absolute path /usb1/. 
If no filename is specified (the filename parameter is an empty string), the script is saved to internal 
nonvolatile memory. Only a script with filename defined can be saved to internal nonvolatile 
memory. If a filename is given, the script is saved to the USB flash drive. 
If no filename is specified (the filename parameter is an empty string), the script is saved to internal 
nonvolatile memory. If a filename is given, the script is saved to the USB flash drive. 
You can add the file extension, but it is not required. The only allowed extension is .tsp (see 
Example 2). 

Example 1 
 

test8.save() Saves the script referenced by the variable 
test8 to nonvolatile memory. 

Example 2 
 

test8.save("/usb1/myScript.tsp") Saves the script referenced by the variable 
test8 to a file named myScript.tsp on your 
USB flash drive. 

Also see 

Save a user script (on page 6-7) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-165 

 

scriptVar.source 
This attribute contains the source code of a script. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) 
(see Details) 

No Not applicable Not saved Not applicable 

Usage 

code = scriptVar.source 
scriptVar.source = nil 
 

scriptVar The name of the variable that references the script that contains the source code 
code The body of the script 

 

Details 

The loadscript or loadandrunscript and endscript keywords are not included in the source 
code.  
The body of the script is a single string with lines separated by the new line character. 
The instrument automatically stores the source for all scripts that are loaded on the instrument. To 
free up memory or to obfuscate the code, assign nil to the source attribute of the script. Although 
this attribute is writable, it can only be set to the nil value. 

 

Example 
 

test7 = script.new("display.clear() display.settext('Hello from my test')", "") 
print(test7.source) 

This example creates a script called "test7" that displays a message on the front panel and retrieves the 
source code. 
Output: 
display.clear() display.settext('Hello from my test') 

Also see 

scriptVar.list() (on page 7-162) 
 

settime() 
This function sets the real-time clock (sets present time of the system). 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

settime(time) 
 

time The time in seconds since January 1, 1970 UTC 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-166 707B-901-01 Rev. B / January 2015 

 

Details 

This function sets the date and time of the instrument based on the time parameter (specified in 
UTC time). UTC time is specified as the number of seconds since Jan 1, 1970, UTC. You can use 
UTC time from a local time specification, or you can use UTC time from another source (for example, 
your computer). 

Example 
 

systemTime = os.time({year = 2010, 
       month = 3, 
       day = 31, 
       hour = 14, 
       min = 25}) 
settime(systemTime) 

Sets the date and time to Mar 31, 2010 at 
2:25 pm. 
 
 
 

 

Also see 

gettimezone() (on page 7-92) 
settimezone() (on page 7-166) 

 

settimezone() 
This function sets the local time zone. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

settimezone(offset) 
settimezone(offset, dstOffset, dstStart, dstEnd) 
 

offset String representing offset from UTC 
dstOffset String representing the daylight savings offset from UTC 
dstStart String representing when daylight savings time starts 
dstEnd String representing when daylight savings time ends 

 

Details 

You only need to set the time zone if you use the os.time() and os.date() functions.  
If only one parameter is given, the same time offset is used throughout the year. If four parameters 
are given, time is adjusted twice during the year for daylight savings time. 
offset and dstOffset are strings of the form "[+|-]hh[:mm[:ss]]" that indicate how much 
time must be added to the local time to get UTC time: 

• hh is a number between 0 and 23 that represents hours 
• mm is a number between 0 and 59 that represents minutes 
• ss is a number between 0 and 59 that represents seconds 

The minute, second, +, and − fields are optional. 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-167 

 

For example, to set the UTC-5 time zone, you specify the string "5", because UTC-5 is 5 hours 
behind UTC and you must add 5 hours to the local time to determine UTC time. To specify the time 
zone UTC4, you specify "-4", because UTC4 is 4 hours ahead of UTC and 4 hours must be 
subtracted from the local time to determine UTC. 
dstStart and dstEnd are strings of the form "MM.w.dw/hh[:mm[:ss]]" that indicate when 
daylight savings time begins and ends respectively: 

• MM is a number between 1 and 12 that represents the month 
• w is a number between 1 and 5 that represents the week in the month 
• dw is a number between 0 and 6 that represents the day of the week (where 0 is Sunday) 

The rest of the fields represent the time of day that the change takes effect: 
• hh represents hours 
• mm represents minutes 
• ss represents seconds 

The minutes and seconds fields are optional. 
The week of the month and day of the week fields are not specific dates. 

 

Example 
 

settimezone("8", "1", "3.3.0/02", "11.2.0/02") 
 
 

settimezone(offset) 

Sets offset to equal +8 hours, +1 
hour for DST, starts on Mar 14 at 2:00 
a.m, ends on Nov 7 at 2:00 a.m. 
Sets local time zone to offset. 

Also see 

gettimezone() (on page 7-92) 
settime() (on page 7-165) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-168 707B-901-01 Rev. B / January 2015 

 

slot[X].idn 
This attribute returns a string that contains information about the card in slot X. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

idnString = slot[X].idn 
 

idnString The return string 
X Slot number (1 to 6) 

Details 

The information that is returned depends on whether the card in the slot is an actual card or 
pseudocard. 
For actual cards, this returns a comma-separated string that contains the model number, description, 
firmware revision, and serial number of the card installed in slot X. 
For pseudocards, the response is Pseudo, followed by the model number, description, firmware 
revision, and ??? for the serial number. 

Example 
 

 

print(slot[1].idn) If a Model 7173 card is installed in slot 1, the response is: 
7173,4x12 Hi Freq Matrix AAAA,02.01a,99999999 

Also see 

Slot (on page 5-13) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-169 

 

slot[X].poles.four 
This attribute indicates if a four-pole setting is supported for the channels on the card. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

fourPole = slot[X].poles.four 
 

fourPole The return value 
X Slot number (1 to 6) 

Details 

This attribute only exists if a card is installed and if the card supports four-pole settings for the 
channels on the card. If not, the value is nil. If supported, the value is 1. 

Example 
 

fourPole3 = slot[3].poles.four 
print(fourPole3) 

Queries if Slot 3 supports four-pole settings 
for the channels on the card. 
Output if card supports four pole: 
1.00000000000e+00 
 
Output if card does not support four pole: 
nil 

Also see 

slot[X].poles.one (on page 7-170) 
slot[X].poles.two (on page 7-171) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-170 707B-901-01 Rev. B / January 2015 

 

slot[X].poles.one 
This attribute indicates if a one-pole setting is supported for the channels on the card. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

onePole = slot[X].poles.one 
 

onePole The return value 
X Slot number (1 to 6) 

Details 

This attribute only exists if a card is installed and if the card supports one-pole settings for the 
channels on the card. If not, the value is nil. If supported, the value is 1. 

Example 
 

print(slot[3].poles.one) Query to see if Slot 3 supports one-pole 
settings for the channels on the card. 
Output if card supports one pole: 
1.00000000000e+00 
 
Output if card does not support one pole: 
nil 

Also see 

slot[X].poles.four (on page 7-169) 
slot[X].poles.two (on page 7-171) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-171 

 

slot[X].poles.two 
This attribute indicates if a two-pole setting is supported for the channels on the card. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

twoPole = slot[X].poles.two 
 

twoPole The return value 
X Slot number (1 to 6) 

Details 

This attribute only exists is a card is installed and if the card supports a two-pole setting for the 
channels on the card. 
If not, the value is nil. If supported, the value is 1. 

Example 
 

twoPole3 = slot[3].poles.two 
print(twoPole3) 

Query to see if Slot 3 supports two-pole 
settings for the channels on the card. 
Output if card supports two pole: 
1.00000000000e+00 
 
Output if card does not support two pole: 
nil 

Also see 

slot[X].poles.one (on page 7-170) 
slot[X].poles.four (on page 7-169) 

 

slot[X].pseudocard 
This attribute specifies the corresponding pseudocard to implement for the designated slot. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Not applicable Not applicable See Details 

 

Usage 

pseudoCard = slot[X].pseudocard 
slot[X].pseudocard = pseudoCard 

pseudoCard The pseudocards available for Models 707B and 708B are: 
• slot.PSEUDO_NONE or 0 for no pseudocard selection 
• 7072 for the Model 7072 8x12 Semiconductor Matrix Card 
• 70721 for the Model 7072-HV 8x12 High-Voltage Semiconductor Matrix Card 
• 7173 for the Model 7173-50 8x12 High-Frequency 2-Pole 4x12 Matrix Card 
• 7174 for the Model 7174A 8x12 Low-Current, High-Speed Matrix Card 

X Slot number (1 to 6) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-172 707B-901-01 Rev. B / January 2015 

 

Details 

This attribute only exists for a slot if that slot has no card installed in it. If a card is installed, the 
response is nil when queried. If no card installed and the slot is empty,  the response is 0. 
After assigning a pseudocard, the valid commands and attributes based on that pseudocard exist for 
that slot. For example, the slot[X].idn attribute is valid. 
Changing the pseudocard card assignment from a card to slot.PSEUDO_NONE invalidates existing 
scan lists that include that slot. 

 

Example 1 
 

myPseudoCard = slot[3].pseudocard 
if myPseudoCard == 7072 then 
   print("Pseudo-7072 in Slot #3") 
end 

If slot 3 is configured to have a 7072 pseudocard, 
the following message is output: 
Pseudo-7072 in Slot #3 

 

Example 2 
 

slot[1].pseudocard = 0 
print(slot[1].idn) 
slot[1].pseudocard = 7072 
print(slot[1].idn) 
 
 
 
slot[1].pseudocard = 0 
print(slot[1].idn) 
slot[1].pseudocard = 7070 
print(slot[1].idn) 

This example requires an empty slot. 
The slot is set to empty and then set to a valid value. 
Output: 
Empty Slot 
7072,Pseudo 8x12 SemiMatrix,00.00a,???????? 
 
 
To change the pseudocard, set the slot to empty again, 
then define the new card. 
Output: 
Empty Slot 
7070,Universal Adapter Card,00.00a,???????? 

Also see 

Slot (on page 5-13) 
slot[X].idn (on page 7-168) 

 

status.condition 
This attribute stores the status byte condition register. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not saved Not applicable 

Usage 

statusByte = status.condition 
 

statusByte The status byte; a zero (0) indicates no bits set; other values indicate various bit 
settings 

Details 

This attribute is used to read the status byte, which is returned as a numeric value. The binary 
equivalent of the value of this attribute indicates which register bits are set. In the binary equivalent, 
the least significant bit is bit B0, and the most significant bit is bit B7. For example, if a value of 
1.29000e+02 (which is 129) is read as the value of this register, the binary equivalent is 1000 0001. 
This value indicates that bit B0 and bit B7 are set. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-173 

 

 
B7 B6 B5 B4 B3 B2 B1 B0 

** > > > > > > * 
1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

The returned value can indicate one or more status events occurred. When an enabled status event 
occurs, a summary bit is set in this register to indicate the event occurrence. 

  

 The individual bits of this register have the following meanings: 
 

Bit Value Description 

B0 status.MEASUREMENT_SUMMARY_BIT 
status.MSB 

Set summary bit indicates that an enabled measurement 
event has occurred.  
Bit B0 decimal value: 1 

B1 status.SYSTEM_SUMMARY_BIT 
status.SSB 

Set summary bit indicates that an enabled system event 
has occurred. 
Bit B1 decimal value: 2 

B2 status.ERROR_AVAILABLE 
status.EAV 

Set summary bit indicates that an error or status 
message is present in the Error Queue.  
Bit B2 decimal value: 4 

B3 status.QUESTIONABLE_SUMMARY_BIT 
status.QSB 

Set summary bit indicates that an enabled questionable 
event has occurred.  
Bit B3 decimal value: 8 

B4 status.MESSAGE_AVAILABLE 
status.MAV 

Set summary bit indicates that a response message is 
present in the Output Queue.  
Bit B4 decimal value: 16 

B5 status.EVENT_SUMMARY_BIT 
status.ESB 

Set summary bit indicates that an enabled standard 
event has occurred.  
Bit B5 decimal value: 32 

B6 status.RQS 
status.MASTER_SUMMARY_STATUS 
status.MSS 

Request Service (RQS)/Master Summary Status (MSS). 
Depending on how it is used, bit B6 of the status byte 
register is either the Request for Service (RQS) bit or 
the Master Summary Status (MSS) bit: 
• When using the GPIB, USB, or VXI-11 serial poll 

sequence of the Models 707B and 708B to obtain 
the status byte (serial poll byte), B6 is the RQS 
bit. The set bit indicates that the Request Service 
(RQS) bit of the status byte (serial poll byte) is 
set and a serial poll (SRQ) has occurred.  

• When using the status.condition register 
command or the *STB? common command to 
read the status byte, B6 is the MSS bit. Set bit 
indicates that an enabled summary bit of the 
status byte register is set. 

Bit B6 decimal value: 64 
B7 status.OPERATION_SUMMARY_BIT 

status.OSB 
Set summary bit indicates that an enabled operation 
event has occurred. 
Bit B7 decimal value: 128 

 

In addition to the above constants,  when more than one bit of the register is set, statusByte 
equals the sum of their decimal weights. For example, if 129 is returned, bits B0 and B7 are set (1 + 
128). 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-174 707B-901-01 Rev. B / January 2015 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 

Example 
 

statusByte = status.condition 
print(statusByte) 

Returns statusByte. 
Sample output: 
1.29000e+02 
Converting this output (129) to its binary equivalent 
yields 1000 0001  
Therefore, this output indicates that the set bits of 
the status byte condition register are presently B0 
(MSS) and B7 (OSB). 

 

Also see 

Status byte and service request (SRQ) (on page C-16) 
 

status.node_enable 
This attribute stores the system node enable register. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Status reset Not saved 0 
 

Usage 

nodeEnableRegister = status.node_enable 
status.node_enable = nodeEnableRegister 
 

nodeEnableRegister The status of the system node enable register; a zero (0) indicates no bits set (also 
send 0 to clear all bits); other values indicate various bit settings 

 

Details 

This attribute is used to read or write to the system node enable register. Reading the system node 
enable register returns a value. The binary equivalent of the value indicates which register bits are 
set. In the binary equivalent, the least significant bit is bit B0, and the most significant bit is bit B7. For 
example, assume the value of 1.29000e+02 (which is 129) is returned for the system node enable 
register, the binary equivalent is 1000 0001. This value indicates that bit B0 and bit B7 are set. 
 

B7 B6 B5 B4 B3 B2 B1 B0 

** > > > > > > * 
1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 
Assigning a value to this attribute enables one or more status events. When an enabled status event 
occurs, a summary bit is set in the appropriate system summary register. The register and bit that is 
set depends on the TSP-Link node number assigned to this instrument. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-175 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 

B0 status.MEASUREMENT_SUMMARY_BIT 
status.MSB 

Set summary bit indicates that an enabled measurement 
event has occurred.  
Bit B0 decimal value: 1 

B1 Not used Not applicable. 
B2 status.ERROR_AVAILABLE 

status.EAV 
Set summary bit indicates that an error or status 
message is present in the Error Queue.  
Bit B2 decimal value: 4 

B3 status.QUESTIONABLE_SUMMARY_BIT 
status.QSB 

Set summary bit indicates that an enabled questionable 
event has occurred.  
Bit B3 decimal value: 8 

B4 status.MESSAGE_AVAILABLE 
status.MAV 

Set summary bit indicates that a response message is 
present in the Output Queue.  
Bit B4 decimal value: 16 

B5 status.EVENT_SUMMARY_BIT 
status.ESB 

Set summary bit indicates that an enabled standard 
event has occurred.  
Bit B5 decimal value: 32 

B6 status.MASTER_SUMMARY_STATUS 
status.MSS 

Set bit indicates that an enabled Master Summary 
Status (MSS) bit of the Status Byte Register is set. 
Bit B6 decimal value: 64 

B7 status.OPERATION_SUMMARY_BIT 
status.OSB 

Set summary bit indicates that an enabled operation 
event has occurred.  
Bit B7 decimal value: 128 

 

As an example, to set the B0 bit of the system node enable register, set status.node_enable = 
status.MSB. 
In addition to the above values, nodeEnableRegister can be set to the numeric equivalent of the 
bit to set. To set more than one bit of the register, set nodeEnableRegister to the sum of their 
decimal weights. For example, to set bits B0 and B7, set nodeEnableRegister to 129 (1 + 128). 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 

Example 1 
 

nodeEnableRegister = status.MSB + status.OSB 
status.node_enable = nodeEnableRegister 

Sets the MSB and OSB bits of the 
system node enable register using 
constants. 

 

Example 2 
 

-- decimal 129 = binary 10000001 
nodeEnableRegister = 129 
status.node_enable = nodeEnableRegister 

Sets the MSB and OSB bits of the 
system node enable register using a 
decimal value. 

 

Also see 

status.condition (on page 7-172) 
status.system.* (on page 7-190) 
Status byte and service request (SRQ) (on page C-16) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-176 707B-901-01 Rev. B / January 2015 

 

status.node_event 
This attribute stores the status node event register. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not saved 0 
 

Usage 

nodeEventRegister = status.node_event 
 

nodeEventRegister The status of the node event register; a zero (0) indicates no bits set; other values 
indicate various bit settings 

 

Details 

This attribute is used to read the status node event register, which is returned as a numeric value 
(reading this register returns a value). The binary equivalent of the value of this attribute indicates 
which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the most 
significant bit is bit B7. For example, if a value of 1.29000e+02 (which is 129) is read as the value of 
this register, the binary equivalent is 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 

 
B7 B6 B5 B4 B3 B2 B1 B0 

** > > > > > > * 
1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

The returned value can indicate one or more status events occurred. 
 

 

Bit Value Description 
B0 status.MEASUREMENT_SUMMARY_BIT 

status.MSB 
Set summary bit indicates that an enabled measurement 
event has occurred.  
Bit B0 decimal value: 1 

B1 Not used Not applicable 
B2 status.ERROR_AVAILABLE 

status.EAV 
Set summary bit indicates that an error or status message 
is present in the Error Queue.  
Bit B2 decimal value: 4 

B3 status.QUESTIONABLE_SUMMARY_BIT 
status.QSB 

Set summary bit indicates that an enabled questionable 
event has occurred.  
Bit B3 decimal value: 8 

B4 status.MESSAGE_AVAILABLE 
status.MAV 

Set summary bit indicates that a response message is 
present in the Output Queue.  
Bit B4 decimal value: 16 

B5 status.EVENT_SUMMARY_BIT 
status.ESB 

Set summary bit indicates that an enabled standard event 
has occurred.  
Bit B5 decimal value: 32 

B6 status.MASTER_SUMMARY_STATUS 
status.MSS 

Set bit indicates that an enabled Master Summary Status 
(MSS) bit of the Status Byte register is set. 
Bit B6 decimal value: 64 

B7 status.OPERATION_SUMMARY_BIT 
status.OSB 

Set summary bit indicates that an enabled operation event 
has occurred.  
Bit B7 decimal value: 128 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-177 

 

In addition to the above constants, nodeEventRegister can be set to the decimal equivalent of the 
bits set. When more than one bit of the register is set, nodeEventRegister contains the sum of 
their decimal weights. For example, if 129 is returned, bits B0 and B7 are set (1 + 128). 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 

Example 
 

nodeEventRegister = status.node_event 
print(nodeEventRegister) 

Reads the status node event register. 
Sample output: 
1.29000e+02 
Converting this output (129) to its binary 
equivalent yields 1000 0001  
Therefore, this output indicates that the set bits 
of the status byte condition register are presently 
B0 (MSB) and B7 (OSB). 

 

Also see 

Status byte and service request (SRQ) (on page C-16) 
status.condition (on page 7-172) 
status.system.* (on page 7-190) 

 

status.operation.* 
These attributes manage the operation status register set of the status model. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 

.event (R) Yes Status reset Not saved 0 

.ntr (RW) Yes Status reset Not saved 0 

.ptr (RW) Yes Status reset Not saved 22,528 (All bits set) 
 

Usage 

operationRegister = status.operation.condition 
operationRegister = status.operation.enable 
operationRegister = status.operation.event 
operationRegister = status.operation.ntr 
operationRegister = status.operation.ptr 
status.operation.enable = operationRegister 
status.operation.ntr = operationRegister 
status.operation.ptr = operationRegister 
 

operationRegister The status of the operation status register; a zero (0) indicates no bits set (also send 
0 to clear all bits); other values indicate various bit settings 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-178 707B-901-01 Rev. B / January 2015 

 

Details 

These attributes read or write the operation status registers. 
Reading a status register returns a value. The binary equivalent of the returned value indicates which 
register bits are set. The least significant bit of the binary number is bit B0, and the most significant bit 
is bit B15. For example, if a value of 2.04800e+04 (which is 20,480) is read as the value of the 
condition register, the binary equivalent is 0101 0000 0000 0000. This value indicates that bit B14 
(PROGRAM_RUNNING) and bit B12 (USER) are set. 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

* Least significant bit 
** Most significant bit 
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 

 

 

Bit Value Description 
B0-B10 Not used Not applicable 
B11 status.operation.PROMPTS 

status.operation.PRMPTS 
Set bit indicates that command prompts are enabled.  
Bit B11 decimal value: 2,048 

B12 status.USER Set bit indicates that an enabled bit in the 
status.operation.user register is set. 
Bit B12 decimal value: 4,096 

B13 Not used. Not applicable. 

B14 status.operation.PROGRAM_RUNNING 
status.operation.PROG 

Set bit indicates that a program is running. 
Bit B14 decimal value: 16,384 

B15 Not used Not applicable 
 
 

As an example, to set bit B12 of the operation status enable register, set 
status.operation.enable = status.operation.USER. 
In addition to the above constants, operationRegister can be set to the numeric equivalent of the 
bit to set. To set more than one bit of the register, set operationRegister to the sum of their 
decimal weights. For example, to set bits B12 and B14, set operationRegister to 20,480 (which 
is the sum of 4,096 + 16,384).  

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-179 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

operationRegister = status.operation.USER + 
   status.operation.PROG 
status.operation.enable = operationRegister 

Sets the USER and PROG bits of the 
operation status enable register using 
constants. 

 

Example 2 
 

-- decimal 20480 = binary 0101 0000 0000 0000 
operationRegister = 20480 
status.operation.enable = operationRegister 

Sets the USER and PROG bits of the 
operation status enable register using a 
decimal value. 

 

Also see 

None 
 

status.operation.user.* 
These attributes manage the operation status user register set of the status model. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (RW) Yes Status reset Not saved 0 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set) 
 

Usage 

operationRegister = status.operation.user.condition 
operationRegister = status.operation.user.enable 
operationRegister = status.operation.user.event 
operationRegister = status.operation.user.ntr 
operationRegister = status.operation.user.ptr 
status.operation.user.condition = operationRegister 
status.operation.user.enable = operationRegister 
status.operation.user.ntr = operationRegister 
status.operation.user.ptr = operationRegister 
 

operationRegister The status of the operation status user register; a zero (0) indicates no bits set 
(also send 0 to clear all bits); other values indicate various bit settings 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-180 707B-901-01 Rev. B / January 2015 

 

Details 

These attributes are used to read or write to the operation status user registers. Reading a status 
register returns a value. The binary equivalent of the value indicates which register bits are set. In the 
binary equivalent, the least significant bit is bit B0, and the most significant bit is bit B15. For example, 
if a value of 1.29000e+02 (which is 129) is read as the value of the condition register, the binary 
equivalent is 0000 0000 1000 0001. This value indicates that bits B0 and B7 are set. 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 
B0 status.operation.user.BIT0 Bit B0 decimal value: 1 
B1 status.operation.user.BIT1 Bit B1 decimal value: 2 
B2 status.operation.user.BIT2 Bit B2 decimal value: 4 
B3 status.operation.user.BIT3 Bit B3 decimal value: 8 
B4 status.operation.user.BIT4 Bit B4 decimal value: 16 
B5 status.operation.user.BIT5 Bit B5 decimal value: 32 
B6 status.operation.user.BIT6 Bit B6 decimal value: 64 

B7 status.operation.user.BIT7 Bit B7 decimal value: 128 
B8 status.operation.user.BIT8 Bit B8 decimal value: 256 
B9 status.operation.user.BIT9 Bit B9 decimal value: 512 
B10 status.operation.user.BIT10 Bit B10 decimal value: 1,024 
B11 status.operation.user.BIT11 Bit B11 decimal value: 2,048 
B12 status.operation.user.BIT12 Bit B12 decimal value: 4,096 

B13 status.operation.user.BIT13 Bit B13 decimal value: 8,192 

B14 status.operation.user.BIT14 Bit B14 decimal value: 16,384 

B15 Not used Not applicable 
 

As an example, to set bit B0 of the operation status user enable register, set 
status.operation.user.enable = status.operation.user.BIT0. 
In addition to the above constants, operationRegister can be set to the numeric equivalent of the 
bit to set. To set more than one bit of the register, set operationRegister to the sum of their 
decimal weights. For example, to set bits B11 and B14, set operationRegister to 18,432 (which 
is the sum of 2,048 + 16,384).  

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-181 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

Example 1 
 

operationRegister = status.operation.user.BIT11 + 
   status.operation.user.BIT14 
status.operation.user.enable = operationRegister 

Uses constants to set bits B11 and  B14 
of the operation status user enable 
register. 

 

Example 2 
 

-- 18432 = binary 0100 1000 0000 0000 
operationRegister = 18432 
status.operation.enable = operationRegister 

Uses a decimal value to set bits B11 and  
B14 of the operation status user enable 
register. 

 

Also see 

status.operation.* (on page 7-177) 
 

status.questionable.* 
These attributes manage the status model's questionable status register set. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 32,256 (All bits set) 
 

Usage 

questionableRegister = status.questionable.condition 
questionableRegister = status.questionable.enable 
questionableRegister = status.questionable.event 
questionableRegister = status.questionable.ntr 
questionableRegister = status.questionable.ptr 
status.questionable.enable = questionableRegister 
status.questionable.ntr = questionableRegister 
status.questionable.ptr = questionableRegister 
 

questionableRegister The status of the questionable status register; a zero (0) indicates no bits set 
(also send 0 to clear all bits); other values indicate various bit settings 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-182 707B-901-01 Rev. B / January 2015 

 

Details 

These attributes are used to read or write to the questionable status registers. Reading a status 
register returns a value. In the binary equivalent, the least significant bit is bit B0, and the most 
significant bit is bit B15. For example, if a value of 1.22880e+04 (which is 12,288) is read as the value 
of the condition register, the binary equivalent is 0011 0000 0000 0000. This value indicates that bits 
B12 and B13 are set. 

 

 

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

* Least significant bit 
** Most significant bit 
 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 

 

 

Bit Value Description 
B0-B8 Not used Not available 
B9 status.questionable.S1THR 

status.questionable.SLOT1_THERMAL 
Bit B9 decimal value: 512 

B10 status.questionable.S2THR 
status.questionable.SLOT2_THERMAL 

Bit B10 decimal value: 1,024 

B11 status.questionable.S3THR 
status.questionable.SLOT3_THERMAL 

Bit B11 decimal value: 2,048 

B12 status.questionable.S4THR 
status.questionable.SLOT4_THERMAL 

Bit B12 decimal value: 4,096 

B13 status.questionable.S5THR 
status.questionable.SLOT5_THERMAL 

Bit B13 decimal value: 8,192 

B14 status.questionable.S6THR 
status.questionable.SLOT6_THERMAL 

Bit B14 decimal value: 16,384 

B15 Not used Not available 
 

As an example, to set bit B9 of the questionable status enable register, set 
status.questionable.enable = status.questionable.SLOT1_THERMAL. 
In addition to the above constants, questionableRegister can be set to the numeric equivalent of 
the bit to set. To set more than one bit of the register, set questionableRegister to the sum of 
their decimal weights. For example, to set bits B12 and B13, set questionableRegister to 12,288 
(which is the sum of 4,096 + 8,192).  

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-183 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

questionableRegister = status.questionable.S1THR 
+ 

    status.questionable.S3THR 
status.questionable.enable = questionableRegister 

Uses constants to set bits B9 and  B11 of 
the status questionable enable register. 

 

Example 2 
 

-- decimal 2560 = binary 00001010 0000 0000 
questionableRegister = 2560 
status.questionable.enable = questionableRegister 

Uses a decimal value to set bits B9 and 
B11 of the status questionable enable 
register. 

 

Also see 

None 
 

status.request_enable 
This attribute stores the service request (SRQ) enable register. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Status reset Not saved 0 
 

Usage 

requestSRQEnableRegister = status.request_enable 
status.request_enable = requestSRQEnableRegister 
 

requestSRQEnableRegister The status of the service request (SRQ) enable register; a zero (0) 
indicates no bits set (also send 0 to clear all bits); other values indicate 
various bit settings 

 

Details 

This attribute is used to read or write to the service request enable register. Reading the service 
request enable register returns a value. The binary equivalent of the value of this attribute indicates 
which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the most 
significant bit is bit B7. For example, if a value of 1.29000e+02 (which is 129) is read as the value of 
this register, the binary equivalent is 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-184 707B-901-01 Rev. B / January 2015 

 

 
B7 B6 B5 B4 B3 B2 B1 B0 

** > > > > > > * 
1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 
B0 status.MEASUREMENT_SUMMARY_BIT 

status.MSB 
Set summary bit indicates that an enabled event in the 
Measurement Event Register has occurred. 
Bit B0 decimal value: 1 

B1 status.SYSTEM_SUMMARY_BIT 
status.SSB 

This bit is only available on Models 
2601A/2602A/2611A/2612A/2635A/2636A. Set summary 
bit indicates that an enabled event in the System Summary 
Register has occurred. 
Bit B1 decimal value: 2 

B2 status.ERROR_AVAILABLE 
status.EAV 

Set summary bit indicates that an error or status message 
is present in the Error Queue. 
Bit B2 decimal value: 4 

B3 status.QUESTIONABLE_SUMMARY_BIT 
status.QSB 

Set summary bit indicates that an enabled event in the 
Questionable Status Register has occurred. 
Bit B3 decimal value: 8 

B4 status.MESSAGE_AVAILABLE 
status.MAV 

Set summary bit indicates that a response message is 
present in the Output Queue. 
Bit B4 decimal value: 16 

B5 status.EVENT_SUMMARY_BIT 
status.ESB 

Set summary bit indicates that an enabled event in the 
Standard Event Status Register has occurred. 
Bit B5 decimal value: 32 

B6 Not used Not applicable 
B7 status.OPERATION_SUMMARY_BIT 

status.OSB 
Set summary bit indicates that an enabled event in the 
Operation Status Register has occurred. 
Bit B7 decimal value: 128 

 
 

As an example, to set bit B0 of the service request enable register, set status.request_enable 
= status.MSB. 
In addition to the above values, requestSRQEnableRegister can be set to the numeric equivalent 
of the bit to set. To set more than one bit of the register, set requestSRQEnableRegister to the 
sum of their decimal weights. For example, to set bits B0 and B7, set 
requestSRQEnableRegister to 129 (1 + 128). 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 

Example 1 
 

requestSRQEnableRegister = status.MSB + 
   status.OSB 

status.request_enable = requestSRQEnableRegister 

Uses constants to set the MSB and OSB 
bits of the service request (SRQ) enable 
register. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-185 

 

Example 2 
 

-- decimal 129 = binary 10000001 
requestSRQEnableRegister = 129 
status.request_enable = requestSRQEnableRegister 

Uses a decimal value to set the MSB and 
OSB bits of the service request (SRQ) 
enable register. 

 

Also see 

Status byte and service request (SRQ) (on page C-16) 
status.condition (on page 7-172) 
status.system.* (on page 7-190) 

 
 

status.request_event 
This attribute stores the service request (SRQ) event register. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not saved 0 
 

Usage 

requestSRQEventRegister = status.request_event 
 

requestSRQEventRegister The status of the request event register; a zero (0) indicates no bits set; 
other values indicate various bit settings 

 

Details 

This attribute is used to read the service request event register, which is returned as a numeric value. 
Reading this register returns a value. The binary equivalent of the value of this attribute indicates 
which register bits are set. In the binary equivalent, the least significant bit is bit B0, and the most 
significant bit is bit B7. For example, if a value of 1.29000e+02 (which is 129) is read as the value of 
this register, the binary equivalent is 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 

 
B7 B6 B5 B4 B3 B2 B1 B0 

** > > > > > > * 
1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

The returned value can indicate one or more status events occurred. 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-186 707B-901-01 Rev. B / January 2015 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 
B0 status.MEASUREMENT_SUMMARY_BIT 

status.MSB 
Set summary bit indicates that an enabled event in the 
Measurement Event Register has occurred. 
Bit B0 decimal value: 1 

B1 status.SYSTEM_SUMMARY_BIT 
status.SSB 

This bit is only available on Models 
2601A/2602A/2611A/2612A/2635A/2636A. Set summary 
bit indicates that an enabled event in the System Summary 
Register has occurred.  
Bit B1 decimal value: 2 

B2 status.ERROR_AVAILABLE 
status.EAV 

Set summary bit indicates that an error or status message 
is present in the Error Queue. 
Bit B2 decimal value: 4 

B3 status.QUESTIONABLE_SUMMARY_BIT 
status.QSB 

Set summary bit indicates that an enabled event in the 
Questionable Status Register has occurred. 
Bit B3 decimal value: 8 

B4 status.MESSAGE_AVAILABLE 
status.MAV 

Set summary bit indicates that a response message is 
present in the Output Queue. 
Bit B4 decimal value: 16 

B5 status.EVENT_SUMMARY_BIT 
status.ESB 

Set summary bit indicates that an enabled event in the 
Standard Event Status Register has occurred. 
Bit B5 decimal value: 32 

B6 Not used Not applicable 
B7 status.OPERATION_SUMMARY_BIT 

status.OSB 
Set summary bit indicates that an enabled event in the 
Operation Status Register has occurred. 
Bit B7 decimal value: 128 

 
 

In addition to the above constants, requestEventRegister can be set to the decimal equivalent of 
the bits set. When more than one bit of the register is set, requestEventRegister contains the 
sum of their decimal weights. For example, if 129 is returned, bits B0 and B7 are set (1 + 128). 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 

Example 
 

requestEventRegister = status.request_event 
print(requestEventRegister) 

Reads the status request event register. 
Sample output: 
1.29000e+02 
Converting this output (129) to its binary 
equivalent yields 1000 0001. 
Therefore, this output indicates that the set bits 
of the status request event register are presently 
B0 (MSB) and B7 (OSB). 

 

Also see 

status.condition (on page 7-172) 
status.system.* (on page 7-190) 
Status byte and service request (SRQ) (on page C-16) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-187 

 

status.reset() 
This function resets all bits in the status model. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

status.reset() 
 

Details 

This function clears all status data structure registers (enable, event, NTR, and PTR) to their default 
values. For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status 
register set contents (on page C-1) and Enable and transition registers (on page C-20). 

 

Example 
 

status.reset() Resets the instrument status model. 

Also see 

Status model (on page C-1, on page C-1) 
 
 

status.standard.* 
These attributes manage the standard event status register set of the status model. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 253 (All bits set) 
 

Usage 

standardRegister = status.standard.condition 
standardRegister = status.standard.enable 
standardRegister = status.standard.event 
standardRegister = status.standard.ntr 
standardRegister = status.standard.ptr 
status.standard.enable = standardRegister 
status.standard.ntr = standardRegister 
status.standard.ptr = standardRegister 
 

standardRegister The status of the standard event status register; a zero (0) indicates no bits set (also 
send 0 to clear all bits); other values indicate various bit settings 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-188 707B-901-01 Rev. B / January 2015 

 

Details 

These attributes are used to read or write to the standard event status registers. Reading a status 
register returns a value. The binary equivalent of the returned value indicates which register bits are 
set. The least significant bit of the binary number is bit B0, and the most significant bit is bit B15. For 
example, if a value of 1.29000e+02 (which is 129) is read as the value of the condition register, the 
binary equivalent is 0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 

 

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 
B0 status.standard.OPERATION_COMPLETE 

status.standard.OPC 
Set bit indicates that all pending selected 
instrument operations are completed and the  
instrument is ready to accept new commands. 
The bit is set in response to an *OPC 
command. The opc() function can be used in 
place of the *OPC command. 
Bit B0 decimal value: 1 

B1 Not used Not applicable 
B2 status.standard.QUERY_ERROR 

status.standard.QYE 
Set bit indicates that you attempted to read 
data from an empty Output Queue. 
Bit B2 decimal value: 4 

B3 status.standard.DEVICE_DEPENDENT_ERROR 
status.standard.DDE 

Set bit indicates that an instrument operation 
did not execute properly due to some internal 
condition.  
Bit B3 decimal value: 8 

 

B4 status.standard.EXECUTION_ERROR 
status.standard.EXE 

Set bit indicates that the instrument detected 
an error while trying to execute a command. 
Bit B4 decimal value: 16 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-189 

 

Bit Value Description 
B5 status.standard.COMMAND_ERROR 

status.standard.CME 
Set bit indicates that a command error has 
occurred. Command errors include: 
IEEE Std 488.2 syntax error: Instrument 
received a message that does not follow the 
defined syntax of the IEEE Std 488.2 
standard. 
Semantic error: Instrument received a 
command that was misspelled or received an 
optional IEEE Std 488.2 command that is not 
implemented. 
GET error: The instrument received a Group 
Execute Trigger (GET) inside a program 
message. 
Bit B5 decimal value: 32 

B6 status.standard.USER_REQUEST 
status.standard.URQ 

Set bit indicates that the LOCAL key on the 
instrument front panel was pressed. 
Bit B6 decimal value: 64 

B7 status.standard.POWER_ON 
status.standard.PON 

Set bit indicates that the instrument has been 
turned off and turned back on since the last 
time this register has been read. 
Bit B7 decimal value: 128 

B8-B15 Not used Not applicable 

 
 

As an example, to set bit B0 of the standard event status enable register, set 
status.standard.enable = status.standard.OPC. 
In addition to the above constants, standardRegister can be set to the numeric equivalent of the 
bit to set. To set more than one bit of the register, set standardRegister to the sum of their 
decimal weights. For example, to set bits B0 and B4, set standardRegister to 17 (which is the 
sum of 1 + 16). 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 

 

Example 1 
 

standardRegister = status.standard.OPC 
    + status.standard.EXE 
status.standard.enable = standardRegister 

Uses constants to set the OPC and EXE 
bits of the standard event status enable 
register. 

 
 

Example 2 
 

-- decimal 17 = binary 0001 0001 
standardRegister = 17 
status.standard.enable = standardRegister 

Uses a decimal value to set the OPC and 
EXE bits of the standard event status 
enable register. 

 
 

Also see 

Event summary bit (ESB register) (on page C-9)  
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-190 707B-901-01 Rev. B / January 2015 

 

status.system.* 
These attributes manage the TSP-Link® system summary register of the status model for nodes 1 through 14. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set) 
 

Usage 

enableRegister = status.system.condition 
enableRegister = status.system.enable 
enableRegister = status.system.event 
enableRegister = status.system.ntr 
enableRegister = status.system.ptr 
status.system.enable = enableRegister 
status.system.ntr = enableRegister 
status.system.ptr = enableRegister 
 

enableRegister The status of the system summary register; a zero (0) indicates no bits set; other 
values indicate various bit settings 

 

Details 

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary 
registers. They are set using a constant or a numeric value, but are returned as a numeric value. The 
binary equivalent of the value indicates which register bits are set. In the binary equivalent, the least 
significant bit is bit B0, and the most significant bit is bit B15. For example, if a value of 
1.29000e+02 (which is 129) is read as the value of the condition register, the binary equivalent is 
0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 

 

For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-191 

 

 

Bit Value Description 
B0 status.system.EXTENSION_BIT 

status.system.EXT 
Bit B0 decimal value: 1 

B1 status.system.NODE1 Bit B1 decimal value: 2 
B2 status.system.NODE2 Bit B2 decimal value: 4 
B3 status.system.NODE3 Bit B3 decimal value: 8 
B4 status.system.NODE4 Bit B4 decimal value: 16 
B5 status.system.NODE5 Bit B5 decimal value: 32 
B6 status.system.NODE6 Bit B6 decimal value: 64 
B7 status.system.NODE7 Bit B7 decimal value: 128 
B8 status.system.NODE8 Bit B8 decimal value: 256 
B9 status.system.NODE9 Bit B9 decimal value: 512 
B10 status.system.NODE10 Bit B10 decimal value: 1,024 

B11 status.system.NODE11 Bit B11 decimal value: 2,048 
B12 status.system.NODE12 Bit B12 decimal value: 4,096 
B13 status.system.NODE13 Bit B13 decimal value: 8,192 

B14 status.system.NODE14 Bit B14 decimal value: 16,384 

B15 Not used Not applicable 

 
 

As an example, to set bit B0 of the system summary status enable register, set 
status.system.enable = status.system.enable.EXT. 
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit 
to set. To set more than one bit of the register, set enableRegister to the sum of their decimal 
weights. For example, to set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 
2,048 + 16,384).  

 
 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

enableRegister = status.system.NODE11 + 
    status.system.NODE14 
status.system.enable = enableRegister 

Uses constants to set bits B11 and B14 
of the system summary enable register. 

 

Example 2 
 

-- decimal 18432 = binary 0100 1000 0000 0000 
enableRegister = 18432 
status.system.enable = enableRegister 

Uses a decimal value to set bits B11 and 
B14 of the system summary enable 
register. 

 

Also see 

status.system2.* (on page 7-192) 
System summary bit (System register) (on page C-5) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-192 707B-901-01 Rev. B / January 2015 

 

status.system2.* 
These attributes manage the TSP-Link® system summary register of the status model for nodes 15 through 28. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set) 
 

Usage 

enableRegister = status.system2.condition 
enableRegister = status.system2.enable 
enableRegister = status.system2.event 
enableRegister = status.system2.ntr 
enableRegister = status.system2.ptr 
status.system2.enable = enableRegister 
status.system2.ntr = enableRegister 
status.system2.ptr = enableRegister 
 

enableRegister The status of the system summary 2 register; a zero (0) indicates no bits set; other 
values indicate various bit settings 

 

Details 

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary 
registers. They are set using a constant or a numeric value, but are returned as a numeric value. The 
binary equivalent of the value indicates which register bits are set. In the binary equivalent, the least 
significant bit is bit B0, and the most significant bit is bit B15. For example, if a value of 
1.29000e+02 (which is 129) is read as the value of the condition register, the binary equivalent is 
0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-193 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 

B0 status.system2.EXTENSION_BIT 
status.system2.EXT 

Bit B0 decimal value: 1 

B1 status.system2.NODE15 Bit B1 decimal value: 2 
B2 status.system2.NODE16 Bit B2 decimal value: 4 
B3 status.system2.NODE17 Bit B3 decimal value: 8 
B4 status.system2.NODE18 Bit B4 decimal value: 16 
B5 status.system2.NODE19 Bit B5 decimal value: 32 
B6 status.system2.NODE20 Bit B6 decimal value: 64 
B7 status.system2.NODE21 Bit B7 decimal value: 128 
B8 status.system2.NODE22 Bit B8 decimal value: 256 
B9 status.system2.NODE23 Bit B9 decimal value: 512 
B10 status.system2.NODE24 Bit B10 decimal value: 1,024 
B11 status.system2.NODE25 Bit B11 decimal value: 2,048 
B12 status.system2.NODE26 Bit B12 decimal value: 4,096 
B13 status.system2.NODE27 Bit B13 decimal value: 8,192 
B14 status.system2.NODE28 Bit B14 decimal value: 16,384 
B15 Not used Not applicable 

 
 

As an example, to set bit B0 of the system summary 2 enable register, set 
status.system2.enable = status.system2.EXT. 
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit 
to set. To set more than one bit of the register, set enableRegister to the sum of their decimal 
weights. For example, to set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 
2,048 + 16,384).  

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

enableRegister = status.system2.NODE25 + 
    status.system2.NODE28 
status.system2.enable = enableRegister  

Uses constants to set bits B11 and B14 
of the system summary 2 enable 
register. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-194 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

-- decimal 18432 = binary 0100 1000 0000 0000 
enableRegister = 18432 
status.system2.enable = enableRegister 

Uses a decimal value to set bits B11 and 
B14 of the system summary 2 enable 
register. 

 

Also see 

status.system.* (on page 7-190) 
status.system3.* (on page 7-194) 
System summary bit (System register) (on page C-5) 

 

status.system3.* 
These attributes manage the TSP-Link® system summary register of the status model for nodes 29 through 42. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set) 
 

Usage 

enableRegister = status.system3.condition 
enableRegister = status.system3.enable 
enableRegister = status.system3.event 
enableRegister = status.system3.ntr 
enableRegister = status.system3.ptr 
status.system3.enable = enableRegister 
status.system3.ntr = enableRegister 
status.system3.ptr = enableRegister 
 

enableRegister The status of the system summary 3 register; a zero (0) indicates no bits set; other 
values indicate various bit settings 

 

Details 

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary 
registers. They are set using a constant or a numeric value, but are returned as a numeric value. The 
binary equivalent of the value indicates which register bits are set. In the binary equivalent, the least 
significant bit is bit B0, and the most significant bit is bit B15. For example, if a value of 
1.29000e+02 (which is 129) is read as the value of the condition register, the binary equivalent is 
0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-195 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 
B0 status.system3.EXTENSION_BIT 

status.system3.EXT 
Bit B0 decimal value: 1 

B1 status.system3.NODE29 Bit B1 decimal value: 2 
B2 status.system3.NODE30 Bit B2 decimal value: 4 
B3 status.system3.NODE31 Bit B3 decimal value: 8 

B4 status.system3.NODE32 Bit B4 decimal value: 16 
B5 status.system3.NODE33 Bit B5 decimal value: 32 
B6 status.system3.NODE34 Bit B6 decimal value: 64 
B7 status.system3.NODE35 Bit B7 decimal value: 128 
B8 status.system3.NODE36 Bit B8 decimal value: 256 
B9 status.system3.NODE37 Bit B9 decimal value: 512 
B10 status.system3.NODE38 Bit B10 decimal value: 1,024 
B11 status.system3.NODE39 Bit B11 decimal value: 2,048 
B12 status.system3.NODE40 Bit B12 decimal value: 4,096 
B13 status.system3.NODE41 Bit B13 decimal value: 8,192 
B14 status.system3.NODE42 Bit B14 decimal value: 16,384 
B15 Not used Not applicable 

 
 

As an example, to set bit B0 of the system summary 3 enable register, set 
status.system3.enable = status.system3.EXT. 
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit 
to set. To set more than one bit of the register, set enableRegister to the sum of their decimal 
weights. For example, to set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 
2,048 + 16,384).  

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

enableRegister = status.system3.NODE39 + 
    status.system3.NODE42 
status.system3.enable = enableRegister  

Uses constants to set bits B11 and B14 
of the system summary 3 enable 
register. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-196 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

-- decimal 18432 = binary 0100 1000 0000 0000 
enableRegister = 18432 
status.system3.enable = enableRegister 

Uses a decimal value to set bits B11 and 
B14 of the system summary 3 enable 
register. 

 

Also see 

status.system2.* (on page 7-192) 
status.system4.* (on page 7-196) 
System summary bit (System register) (on page C-5) 

 

status.system4.* 
These attributes manage the TSP-Link® system summary register of the status model for nodes 43 through 56. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 32,767 (All bits set) 
 

Usage 

enableRegister = status.system4.condition 
enableRegister = status.system4.enable 
enableRegister = status.system4.event 
enableRegister = status.system4.ntr 
enableRegister = status.system4.ptr 
status.system4.enable = enableRegister 
status.system4.ntr = enableRegister 
status.system4.ptr = enableRegister 
 

enableRegister The status of the system summary 4 register; a zero (0) indicates no bits set; other 
values indicate various bit settings 

 

Details 

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary 
registers. They are set using a constant or a numeric value, but are returned as a numeric value. The 
binary equivalent of the value indicates which register bits are set. In the binary equivalent, the least 
significant bit is bit B0, and the most significant bit is bit B15. For example, if a value of 
1.29000e+02 (which is 129) is read as the value of the condition register, the binary equivalent is 
0000 0000 1000 0001. This value indicates that bit B0 and bit B7 are set. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-197 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

* Least significant bit 
** Most significant bit 
 
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 

B0 status.system4.EXTENSION_BIT 
status.system4.EXT 

Bit B0 decimal value: 1 

B1 status.system4.NODE43 Bit B1 decimal value: 2 
B2 status.system4.NODE44 Bit B2 decimal value: 4 
B3 status.system4.NODE45 Bit B3 decimal value: 8 
B4 status.system4.NODE46 Bit B4 decimal value: 16 
B5 status.system4.NODE47 Bit B5 decimal value: 32 
B6 status.system4.NODE48 Bit B6 decimal value: 64 
B7 status.system4.NODE49 Bit B7 decimal value: 128 
B8 status.system4.NODE50 Bit B8 decimal value: 256 
B9 status.system4.NODE51 Bit B9 decimal value: 512 
B10 status.system4.NODE52 Bit B10 decimal value: 1,024 
B11 status.system4.NODE53 Bit B11 decimal value: 2,048 
B12 status.system4.NODE54 Bit B12 decimal value: 4,096 
B13 status.system4.NODE55 Bit B13 decimal value: 8,192 
B14 status.system4.NODE56 Bit B14 decimal value: 16,384 
B15 Not used Not applicable 

 
 

As an example, to set bit B0 of the system summary 4 enable register, set 
status.system4.enable = status.system4.enable.EXT. 
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit 
to set. To set more than one bit of the register, set enableRegister to the sum of their decimal 
weights. For example, to set bits B11 and B14, set enableRegister to 18,432 (which is the sum of 
2,048 + 16,384).  

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

enableRegister = status.system4.NODE53 + 
    status.system4.NODE56 
status.system2.enable = enableRegister  

Uses constants to set bit B11 and bit B14 
of the system summary 4 enable 
register. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-198 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

-- decimal 18432 = binary 0100 1000 0000 0000 
enableRegister = 18432 
status.system4.enable = enableRegister 

Uses a decimal value to set bit B11 and 
bit B14 of the system summary 4 enable 
register. 

 

Also see 

status.system3.* (on page 7-194) 
status.system5.* (on page 7-198) 
System summary bit (System register) (on page C-5) 

 

status.system5.* 
These attributes manage the TSP-Link® system summary register of the status model for nodes 57 through 64. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute - - - - - - - - 
.condition (R) Yes Not applicable Not saved Not applicable 
.enable (RW) Yes Status reset Not saved 0 
.event (R) Yes Status reset Not saved 0 
.ntr (RW) Yes Status reset Not saved 0 
.ptr (RW) Yes Status reset Not saved 510 (All bits set) 
 

Usage 

enableRegister = status.system5.condition 
enableRegister = status.system5.enable 
enableRegister = status.system5.event 
enableRegister = status.system5.ntr 
enableRegister = status.system5.ptr 
status.system5.enable = enableRegister 
status.system5.ntr = enableRegister 
status.system5.ptr = enableRegister 
 

enableRegister The status of the system summary 5 register; a zero (0) indicates no bits set; other 
values indicate various bit settings 

 

Details 

In an expanded system (TSP-Link), these attributes are used to read or write to the system summary 
registers. They are set using a constant or a numeric value, but are returned as a numeric value. The 
binary equivalent of the value indicates which register bits are set. In the binary equivalent, the least 
significant bit is bit B0, and the most significant bit is bit B15. For example, if a value of 
1.30000e+02 (which is 130) is read as the value of the condition register, the binary equivalent is 
0000 0000 1000 0010. This value indicates that bit B1 and bit B7 are set. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-199 

 

 
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 
** > > > > > > > > > > > > > > * 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

* Least significant bit 
** Most significant bit 
 
For information about .condition, .enable, .event, .ntr, and .ptr registers, refer to Status register set 
contents (on page C-1) and Enable and transition registers (on page C-20). The individual bits of this 
register are defined in the following table. 
 

Bit Value Description 

B0 Not used Not applicable 
B1 status.system5.NODE57 Bit B1 decimal value: 2 
B2 status.system5.NODE58 Bit B2 decimal value: 4 
B3 status.system5.NODE59 Bit B3 decimal value: 8 

B4 status.system5.NODE60 Bit B4 decimal value: 16 
B5 status.system5.NODE61 Bit B5 decimal value: 32 
B6 status.system5.NODE62 Bit B6 decimal value: 64 
B7 status.system5.NODE63 Bit B7 decimal value: 128 
B8 status.system5.NODE64 Bit B8 decimal value: 256 
B9-B15 Not used Not applicable 

 
 

As an example, to set bit B1 of the system summary 5 enable register, set 
status.system5.enable = status.system5.NODE57. 
In addition to the above constants, enableRegister can be set to the numeric equivalent of the bit 
to set. To set more than one bit of the register, set enableRegister to the sum of their decimal 
weights. For example, to set bits B1 and B4, set enableRegister to 18 (which is the sum of 2 + 
16). 

 

 

Bit B7 B6 B5 B4 B3 B2 B1 B0 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 128 64 32 16 8 4 2 1 
Weights (27) (26) (25) (24) (23) (22) (21) (20) 
 

Bit B15 B14 B13 B12 B11 B10 B9 B8 
Binary value 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 
Decimal 32,768 16,384 8,192 4,096 2,048 1,024 512 256 
Weights (215) (214) (213) (212) (211) (210) (29) (28) 

 

Example 1 
 

enableRegister = status.system5.NODE57 + 
    status.system5.NODE60 
status.system2.enable = enableRegister  

Uses constants to set bits B1 and B4 of 
the system summary 5 enable register. 

 

Example 2 
 

-- decimal 18 = binary 0000 0000 0001 0010 
enableRegister = 18 
status.system5.enable = enableRegister 

Uses a decimal value to set bits B1 and 
B4 of the system summary 5 enable 
register. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-200 707B-901-01 Rev. B / January 2015 

 

Also see 

status.system4.* (on page 7-196) 
System summary bit (System register) (on page C-5) 

 

timer.measure.t() 
This function measures the elapsed time since the timer was last reset. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

time = timer.measure.t() 
 

time The elapsed time in seconds (1 µs resolution) 
 

Example 1 
 

timer.reset() 
-- (intervening code) 
time = timer.measure.t() 
print(time) 

Resets the timer and measures the time since the 
reset. 
 
Output: 
1.469077e+01 
The output will vary. The above output indicates that 
timer.measure.t() was executed 14.69077 
seconds after timer.reset(). 

 

Example 2 
 

beeper.beep(0.5, 2400) 
print("reset timer") 
timer.reset() 
delay(0.5) 
dt = timer.measure.t() 
print("timer after delay:", dt) 
beeper.beep(0.5, 2400) 

Sets the beeper, resets the timer, sets a delay, then 
verifies the time of the delay before the next beeper. 
 
Output: 
reset timer 
timer after delay: 5.00e-01 

 

Also see 

timer.reset() (on page 7-200) 
 

timer.reset() 
This function resets the timer to zero (0) seconds. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

timer.reset() 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-201 

 

Example 
 

timer.reset() 
-- (intervening code) 
time = timer.measure.t() 
print(time) 

Resets the timer and then measures the time since 
the reset. 
Output: 
1.469077e+01 
 
The above output indicates that 
timer.measure.t() was executed 14.69077 
seconds after timer.reset(). 

 

Also see 

timer.measure.t() (on page 7-200) 
 

trigger.blender[N].clear() 
This function clears the blender event detector and resets the overrun indicator of blender N. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

trigger.blender[N].clear() 
 

N The blender number (1 or 2) 

Details 

This command sets the blender event detector to the undetected state and resets the overrun 
indicator of the event detector. 

 

Example 
 

trigger.blender[2].clear() Clears the event detector for 
blender 2. 

Also see 

None 
 

trigger.blender[N].EVENT_ID 
This constant contains the trigger blender event number. 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    

Usage 

eventID = trigger.blender[N].EVENT_ID 
 

eventID Trigger event number 
N The blender number (1 or 2) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-202 707B-901-01 Rev. B / January 2015 

 

Details 

Set the stimulus of any trigger object to the value of this constant to have the trigger object respond to 
trigger events from this trigger blender. 

 

Example 
 

digio.trigger[1].stimulus = trigger.blender[2].EVENT_ID Set the trigger stimulus of 
digital I/O trigger 1 to be 
controlled by the trigger 
blender 2 event. 

 

Also see 

None 
 

trigger.blender[N].orenable 
This attribute selects whether the blender performs OR operations or AND operations. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Trigger blender N reset 
Recall setup 

Create configuration script  false (AND mode) 

Usage 

orenable = trigger.blender[N].orenable 
trigger.blender[N].orenable = orenable 
 

orenable The type of operation: 
• true: OR operation 
• false: AND operation 

N The blender number (1 or 2) 
 

Details 

This command selects whether the blender waits for any one event (OR) or waits for all selected 
events (AND) before signaling an output event. 

 

Example 
 

 

trigger.blender[1].orenable = true 
trigger.blender[1].stimulus[1] = digio.trigger[3].EVENT_ID 
trigger.blender[1].stimulus[2] = digio.trigger[5].EVENT_ID 

Generate a trigger blender 1 
event when a digital I/O 
trigger happens on line 3 or 
5. 

Also see 

trigger.blender[N].reset() (on page 7-203) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-203 

 

trigger.blender[N].overrun 
This attribute indicates whether or not an event was ignored because of the event detector state. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Instrument reset 
Trigger blender N clear 
Trigger blender N reset 

Not applicable Not applicable 

Usage 

overrun = trigger.blender[N].overrun 
 

overrun Trigger blender overrun state (true or false) 
N The blender number (1 or 2) 

 

Details 

Indicates if an event was ignored because the event detector was already in the detected state when 
the event occurred. This is an indication of the state of the event detector that is built into the event 
blender itself. 
This command does not indicate if an overrun occurred in any other part of the trigger model or in any 
other trigger object that is monitoring the event. It also is not an indication of an action overrun. 

 

Example 
 

print(trigger.blender[1].overrun) If an event was ignored, the output 
is true. 
If an event was not ignored, the 
output is false. 

Also see 

trigger.blender[N].reset() (on page 7-203) 
 

trigger.blender[N].reset() 
This function resets some of the trigger blender settings to their factory defaults. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

trigger.blender[N].reset() 
 

N The trigger event blender (1 or 2) 
 

Details 

The trigger.blender[N].reset() function resets the following attributes to their factory 
defaults: 

• trigger.blender[N].orenable 
• trigger.blender[N].stimulus[M] 

It also clears trigger.blender[N].overrun. 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-204 707B-901-01 Rev. B / January 2015 

 

Example 
 

trigger.blender[1].reset() Resets the trigger blender 1 
settings to factory defaults. 

Also see 

trigger.blender[N].orenable (on page 7-202) 
trigger.blender[N].overrun (on page 7-203) 
trigger.blender[N].stimulus[M] (on page 7-204) 

 

trigger.blender[N].stimulus[M] 
This attribute specifies which events trigger the blender. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Reset 
Recall setup 
Trigger blender N reset 

Create 
configuration script 

0 

 

Usage 

eventID = trigger.blender[N].stimulus[M] 
trigger.blender[N].stimulus[M] = eventID 
 

eventID The event that triggers the blender action; see Details 
N An integer representing the trigger event blender (1 or 2) 
M An integer representing the stimulus index (1 to 4) 

 

Details 

There are four acceptors that can each select a different event. The eventID parameter can be the 
event ID of any trigger event. The eventID parameter may be one of the existing trigger event IDs 
shown in the following table. 
 

Trigger event IDs 

Trigger event ID Description 

digio.trigger[N].EVENT_ID An edge (rising, falling, or either based on the configuration 
of the line) on the digital input line 

display.trigger.EVENT_ID The trigger key on the front panel is pressed 
trigger.EVENT_ID A *trg message on the active command interface. If GPIB is 

the active command interface, a GET message also 
generates this event 

trigger.blender[N].EVENT_ID A combination of events has occurred 
trigger.timer[N].EVENT_ID A delay expired 
tsplink.trigger[N].EVENT_ID An edge (rising, falling, or either based on the configuration 

of the line) on the TSP-Link® trigger line 
lan.trigger[N].EVENT_ID A LAN trigger event has occurred 
scan.trigger.EVENT_SCAN_READY Scan ready event 
scan.trigger.EVENT_SCAN_START Scan start event 
scan.trigger.EVENT_CHANNEL_READY Channel ready event 
scan.trigger.EVENT_SCAN_COMP Scan complete event 
scan.trigger.EVENT_IDLE Idle event 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-205 

 

Example 
 

digio.trigger[3].mode = digio.TRIG_FALLING 
digio.trigger[5].mode = digio.TRIG_FALLING 
trigger.blender[1].orenable = true 
trigger.blender[1].stimulus[1] = digio.trigger[3].EVENT_ID 
trigger.blender[1].stimulus[2] = digio.trigger[5].EVENT_ID 

Generate a trigger blender 1 
event when a digital I/O 
trigger happens on line 3 or 
5. 

 

Also see 

trigger.blender[N].reset() (on page 7-203) 
 
 

trigger.blender[N].wait() 
This function waits for a blender trigger event to occur. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

triggered = trigger.blender[N].wait(timeout) 
 

triggered Trigger detection indication for blender 
N The trigger blender (1 or 2) on which to wait 
timeout Maximum amount of time in seconds to wait for the trigger blender event 

 

Details 

This function waits for an event blender trigger event. If one or more trigger events were detected 
since the last time trigger.blender[N].wait() or trigger.blender[N].clear() was 
called, this function returns immediately. 
After detecting a trigger with this function, the event detector automatically resets and rearms. This is 
true regardless of the number of events detected. 

 

Example 
 

digio.trigger[3].mode = digio.TRIG_FALLING 
digio.trigger[5].mode = digio.TRIG_FALLING 
trigger.blender[1].orenable = true 
trigger.blender[1].stimulus[1] = digio.trigger[3].EVENT_ID 
trigger.blender[1].stimulus[2] = digio.trigger[5].EVENT_ID 
 
print(trigger.blender[1].wait(3)) 

Generate a trigger blender 1 
event when a digital I/O 
trigger happens either on 
line 3 or 5. 
 
Wait three seconds while 
checking if trigger blender 1 
event has occurred. 
 
If the blender trigger event 
has happened, then true is 
output. If the trigger event 
has not happened, then 
false is output after the 
timeout expires. 

 

Also see 

trigger.blender[N].clear() (on page 7-201) 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-206 707B-901-01 Rev. B / January 2015 

 

trigger.clear() 
This function clears the command interface trigger event detector. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

trigger.clear() 

Details 

The trigger event detector indicates if a trigger event has been detected since the last 
trigger.wait() call. trigger.clear() clears the trigger event detector and discards the history 
of command interface trigger events. 

Also see 

trigger.wait() (on page 7-213) 
 

trigger.EVENT_ID 
This constant contains the command interface trigger event number. 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    

Usage 

eventID = trigger.EVENT_ID 
 

eventID The event ID for the command interface triggers 

Details 

You can set the stimulus of any trigger object to the value of this constant to have the trigger object 
respond to command interface trigger events. 

Also see 

None 
 

trigger.timer[N].clear() 
This function clears the timer event detector and overrun indicator for the specified trigger timer number. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

trigger.timer[N].clear() 
 

N Trigger timer number (1 to 4) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-207 

 

Details 

This command sets the timer event detector to the undetected state and resets the overrun indicator. 
 

Example 
 

trigger.timer[1].clear() Clears trigger timer 1. 

Also see 

trigger.timer[N].count (on page 7-207) 
 

trigger.timer[N].count 
This attribute sets the number of events to generate each time the timer generates a trigger event. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 
Trigger timer N reset 

Create configuration script  1 

Usage 

count = trigger.timer[N].count 
trigger.timer[N].count = count 
 

count Number of times to repeat the trigger (0 to 1,048,575) 
N Trigger timer number (1 to 4) 

 

Details 

If count is set to a number greater than 1, the timer automatically starts the next trigger timer delay 
at the expiration of the previous delay. 
Set count to zero (0) to cause the timer to generate trigger events indefinitely. 

 

Example 
 

print(trigger.timer[1].count) Read trigger count for timer number 1. 

Also see 

trigger.timer[N].clear() (on page 7-206) 
trigger.timer[N].delay (on page 7-208) 
trigger.timer[N].reset() (on page 7-211) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-208 707B-901-01 Rev. B / January 2015 

 

trigger.timer[N].delay 
This attribute sets and reads the timer delay. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 
Trigger timer N reset 

Create configuration script  10e-6 (10 µs) 

Usage 

interval = trigger.timer[N].delay 
trigger.timer[N].delay = interval 
 

interval Delay interval in seconds (8e-6 to 100,000) 
N Trigger timer number (1 to 4) 

 

Details 

Once the timer is enabled, each time the timer is triggered, it uses this delay period. 
Assigning a value to this attribute is equivalent to: 
trigger.timer[N].delaylist = {interval} 

This creates a delay list of one value. 
Reading this attribute returns the delay interval that will be used the next time the timer is triggered. 

 

Example 
 

trigger.timer[1].delay = 50e-6 Set the trigger timer 1 to delay for 
50 µs. 

 

Also see 

trigger.timer[N].reset() (on page 7-211) 
 

trigger.timer[N].delaylist 
This attribute sets an array of timer intervals. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 
Trigger timer N reset 

Create configuration script {10e-6} 

Usage 

intervals = trigger.timer[N].delaylist 
trigger.timer[N].delaylist = intervals 
 

intervals Table of delay intervals in seconds 
N Trigger timer number (1 to 4) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-209 

 

Details 

Each time the timer is triggered after it is enabled, it uses the next delay period from the array. The 
default value is an array with one value of 10 µs. 
After all elements in the array have been used, the delays restart at the beginning of the list. 
If the array contains more than one element, the average of the delay intervals in the list must be 
≥ 50 µs. 

 

Example 
 

trigger.timer[3].delaylist = {50e-6, 100e-6, 150e-6} 
 
DelayList = trigger.timer[3].delaylist 
for x = 1, table.getn(DelayList) do 
   print(DelayList[x]) 
end 

Set a delay list on trigger timer 3 
with three delays (50 µs, 100 µs, 
and 150 µs). 
 
Read the delay list on trigger 
timer 3. 
 
Output (assuming the delay list was 
set to 50 µs, 100 µs, and 150 µs): 
5.000000000e-05 
1.000000000e-04 
1.500000000e-04 

Also see 

trigger.timer[N].reset() (on page 7-211) 
 

trigger.timer[N].EVENT_ID 
This constant specifies the trigger timer event number. 

Type TSP-Link accessible Affected by Where saved Default value 

Constant Yes    

Usage 

eventID = trigger.timer[N].EVENT_ID 
 

eventID The trigger event number 
N Trigger timer number (1 to 4) 

 

Details 

This constant is an identification number that identifies events generated by this timer. 
Set the stimulus of any trigger object to the value of this constant to have the trigger object respond to 
events from this timer. 

 

Also see 

None 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-210 707B-901-01 Rev. B / January 2015 

 

trigger.timer[N].overrun 
This attribute indicates if an event was ignored because of the event detector state. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Instrument reset 
Recall setup 
Trigger timer N clear 
Trigger timer N reset 

Not applicable false 

Usage 

overrun = trigger.timer[N].overrun 
 

overrun Trigger overrun state (true or false) 
N Trigger timer number (1 to 4) 

 

Details 

This command indicates if an event was ignored because the event detector was already in the 
detected state when the event occurred. 
This is an indication of the state of the event detector built into the timer itself. It does not indicate if 
an overrun occurred in any other part of the trigger model or in any other construct that is monitoring 
the delay completion event. It also is not an indication of a delay overrun. 

 

Example 
 

print(trigger.timer[1].overrun) If an event was ignored, the output 
is true. 
If the event was not ignored, the 
output is false. 

Also see 

trigger.timer[N].reset() (on page 7-211) 
 

trigger.timer[N].passthrough 
This attribute enables or disables the timer trigger pass-through mode. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 
Trigger timer N reset 

Create 
configuration script  

false (disabled) 

 

Usage 

passthrough = trigger.timer[N].passthrough 
trigger.timer[N].passthrough = passthrough 
 

passthrough The state of pass-through mode; set to to one of the following values: 
true: Enabled 
false: Disabled 

N Trigger timer number (1 to 4) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-211 

 

Details 

When pass-through mode is enabled, triggers are passed through immediately and initiate the delay. 
When disabled, a trigger only initiates a delay. 

 

Example 
 

trigger.timer[1].passthrough = true Enables pass-through mode on trigger timer 1. 
 

Also see 

trigger.timer[N].reset() (on page 7-211) 
 

trigger.timer[N].reset() 
This function resets some of the trigger timer settings to their factory defaults. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

trigger.timer[N].reset() 
 

N Trigger timer number (1 to 4) 
 

Details 

The trigger.timer[N].reset() function resets the following attributes to their factory defaults: 
• trigger.timer[N].count 
• trigger.timer[N].delay 
• trigger.timer[N].delaylist 
• trigger.timer[N].passthrough 
• trigger.timer[N].stimulus 

It also clears trigger.timer[N].overrun. 

Example 
 

trigger.timer[1].reset() Resets the attributes associated with timer 1 back 
to factory default values. 

Also see 

trigger.timer[N].count (on page 7-207) 
trigger.timer[N].delay (on page 7-208) 
trigger.timer[N].delaylist (on page 7-208) 
trigger.timer[N].overrun (on page 7-210) 
trigger.timer[N].passthrough (on page 7-210) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-212 707B-901-01 Rev. B / January 2015 

 

trigger.timer[N].stimulus 
This attribute specifies which event starts the timer. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Reset 
Recall setup 
Trigger timer N reset 

Create configuration script  0 

 

Usage 

eventID = trigger.timer[N].stimulus 
trigger.timer[N].stimulus = eventID 
 

eventID The event that triggers the timer delay 
N Trigger timer number (1 to 4) 

 

Details 

The eventID parameter may be one of the trigger event IDs shown in the following table. 
 

Trigger event IDs 

Trigger event ID Description 

digio.trigger[N].EVENT_ID An edge (rising, falling, or either based on the configuration 
of the line) on the digital input line 

display.trigger.EVENT_ID The trigger key on the front panel is pressed 
trigger.EVENT_ID A *trg message on the active command interface. If GPIB is 

the active command interface, a GET message also 
generates this event 

trigger.blender[N].EVENT_ID A combination of events has occurred 
trigger.timer[N].EVENT_ID A delay expired 
tsplink.trigger[N].EVENT_ID An edge (rising, falling, or either based on the configuration 

of the line) on the TSP-Link® trigger line 
lan.trigger[N].EVENT_ID A LAN trigger event has occurred 
scan.trigger.EVENT_SCAN_READY Scan ready event 
scan.trigger.EVENT_SCAN_START Scan start event 
scan.trigger.EVENT_CHANNEL_READY Channel ready event 
scan.trigger.EVENT_SCAN_COMP Scan complete event 
scan.trigger.EVENT_IDLE Idle event 

 

Set this attribute to the eventID of any trigger event to cause the timer to start when that event 
occurs. 
Use zero (0) to disable event processing. 

 

Example 
 

print(trigger.timer[1].stimulus) Prints the event that will start a trigger 1 
timer action. 

 

Also see 

trigger.timer[N].reset() (on page 7-211) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-213 

 

trigger.timer[N].wait() 
This function waits for a trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

triggered = trigger.timer[N].wait(timeout) 
 

triggered Trigger detection indication 
N Trigger timer number (1 to 4) 
timeout Maximum amount of time in seconds to wait for the trigger 

 

Details 

If one or more trigger events were detected since the last time trigger.timer[N].wait() or 
trigger.timer[N].clear() was called, this function returns immediately. 
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. 
This is true regardless of the number of events detected. 

 

Example 
 

triggered = trigger.timer[3].wait(10) 
print(triggered) 

Waits up to 10 s for a trigger on timer 3. 
If false is returned, no trigger was detected 
during the 10 s timeout. 
If true is returned, a trigger was detected. 

Also see 

trigger.timer[N].clear() (on page 7-206) 
 

trigger.wait() 
This function waits for a command interface trigger event. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

triggered = trigger.wait(timeout) 
 

triggered true: A trigger was detected during the timeout period 
false: No triggers were detected during the timeout period 

timeout Maximum amount of time in seconds to wait for the trigger 
 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-214 707B-901-01 Rev. B / January 2015 

 

Details 

This function waits up to timeout seconds for a trigger on the active command interface. A 
command interface trigger occurs when: 

• A GPIB GET command is detected (GPIB only) 
• A VXI-11 device_trigger method is invoked (VXI-11 only) 
• A *TRG message is received 

If one or more of these trigger events were previously detected, this function returns immediately. 
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. 
This is true regardless of the number of events detected. 

 

Example 
 

triggered = trigger.wait(10) 
print(triggered) 

Waits up to 10 seconds for a trigger. 
If false is returned, no trigger was detected 
during the 10-second timeout. 
If true is returned, a trigger was detected. 

Also see 

trigger.clear() (on page 7-206) 
 

tsplink.group 
This attribute contains the group number of a TSP-Link node. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Not applicable Nonvolatile memory 0 

Usage 

groupNumber = tsplink.group 
tsplink.group = groupNumber 
 

groupNumber The group number of the TSP-Link node (0 to 64) 
 

Details 

To remove the node from all groups, set the attribute value to 0. 
When the node is turned off, the group number for that node changes to 0. 
The master node can be assigned to any group. You can also include other nodes in the group that 
includes the master.  Note that any nodes that are set to 0 are automatically included in the group 
that contains the master node, regardless of the group that is assigned to the master node. 

Example 
 

tsplink.group = 3 Assign the instrument to TSP-Link group number 3. 

Also see 

Using groups to manage nodes on TSP-Link network (on page 6-48) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-215 

 

tsplink.master 
This attribute reads the node number assigned to the master node. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

masterNodeNumber = tsplink.master 
 

masterNodeNumber The node number of the master node 
 

Details 

After doing a TSP-Link reset (tsplink.reset()), use this attribute to access the node number of 
the master in a set of instruments connected over TSP-Link. 

Example 
 

LinkMaster = tsplink.master Store the TSP-Link master 
node number in a variable 
called LinkMaster. 

Also see 

tsplink.reset() (on page 7-217) 
 

tsplink.node 
This attribute defines the node number. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Not applicable Nonvolatile memory 2 

Usage 

nodeNumber = tsplink.node 
tsplink.node = nodeNumber 
 

nodeNumber The node number of the instrument or enclosure (1 to 64) 

Details 

This attribute sets the TSP-Link node number and saves the value in nonvolatile memory. 
Changes to the node number do not take effect until tsplink.reset() from an earlier TSP-Link 
instrument is executed on any node in the system. 
Each node connected to the TSP-Link system must be assigned a different node number. 

Example 
 

tsplink.node = 3 Sets the TSP-Link node for this instrument to 
number 3. 

Also see 

tsplink.reset() (on page 7-217)  
tsplink.state (on page 7-218) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-216 707B-901-01 Rev. B / January 2015 

 

tsplink.readbit() 
This function reads the state of a TSP-Link synchronization line. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

data = tsplink.readbit(N) 
 

data The state of the synchronization line 
N The trigger line (1 to 3) 

 

Details 

Returns a value of zero (0) if the line is low and 1 if the line is high. 
 

Example 
 

data = tsplink.readbit(3) 
print(data) 

Assume line 3 is set high, and it is then read. 
Output: 
1.000000e+00 

 

Also see 

tsplink.readport() (on page 7-216) 
tsplink.writebit() (on page 7-226) 

 

tsplink.readport() 
This function reads the TSP-Link synchronization lines as a digital I/O port. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

data = tsplink.readport() 
 

data Numeric value that indicates which lines are set 
 

Details 

The binary equivalent of the returned value indicates the input pattern on the I/O port. The least 
significant bit of the binary number corresponds to line 1 and the value of bit 3 corresponds to line 3. 
For example, a returned value of 2 has a binary equivalent of 010. This indicates that line 2 is high 
(1), and that the other two lines are low (0). 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-217 

 

Example 
 

data = tsplink.readport() 
print(data) 

Reads state of all three TSP-Link lines. 
Assuming line 2 is set high, the output is: 
2.000000e+00 
(binary 010) 
The format of the output may vary depending on the 
ASCII precision setting. 

Also see 

tsplink.readbit() (on page 7-216) 
tsplink.writebit() (on page 7-226) 
tsplink.writeport() (on page 7-227) 

 

tsplink.reset() 
This function initializes (resets) all nodes (instruments) in the TSP-Link system. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

nodesFound = tsplink.reset() 
nodesFound = tsplink.reset(expectedNodes) 
 

nodesFound The number of nodes actually found on the system 
expectedNodes The number of nodes expected on the system (1 to 64) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-218 707B-901-01 Rev. B / January 2015 

 

Details 

This function erases all information regarding other nodes connected on the TSP-Link system and 
regenerates the system configuration. This function must be called at least once before any remote 
nodes can be accessed. If the node number for any instrument is changed, the TSP-Link must be 
reset again. 
If expectedNodes is not given, this function generates an error if no other nodes are found on the 
TSP-Link network. 
If nodesFound is less than expectedNodes, an error is generated. Note that the node on which the 
command is running is counted as a node. For example, giving an expected node count of 1 will not 
generate any errors, even if there are no other nodes on the TSP-Link network. 
Also returns the number of nodes found. 

Example 
 

nodesFound = tsplink.reset(2) 
print("Nodes found = " .. nodesFound) 

Perform a TSP-Link reset and indicate how 
many nodes are found. 
Sample output if two nodes are found: 
Nodes found = 2 
Sample output if fewer nodes are found and 
if localnode.showerrors = 1: 
1219, TSP-Link found fewer nodes 
   than expected 
Nodes found = 1 

Also see 

localnode.showerrors (on page 7-127) 
tsplink.node (on page 7-215) 
tsplink.state (on page 7-218) 

 

tsplink.state 
This attribute describes the TSP-Link online state. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Not applicable Not applicable Not applicable 

Usage 

state = tsplink.state 
 

state TSP-Link state (online or offline) 
 

Details 

When the instrument power is first turned on, the state is offline. After tsplink.reset() is 
successful, the state is online. 

Example 
 

state = tsplink.state 
print(state) 

Read the state of the TSP-Link system. If it is online, 
the output is: 
online 

Also see 

tsplink.node (on page 7-215) 
tsplink.reset() (on page 7-217) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-219 

 

tsplink.trigger[N].assert() 
This function simulates the occurrence of the trigger and generates the corresponding event ID. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tsplink.trigger[N].assert() 
 

N The trigger line (1 to 3) 
 

Details 

The set pulse width determines how long the trigger is asserted. 
 

Example 
 

tsplink.trigger[2].assert() Asserts trigger on trigger line 2. 

Also see 

tsplink.trigger[N].clear() (on page 7-219) 
tsplink.trigger[N].mode (on page 7-220) 
tsplink.trigger[N].overrun (on page 7-222) 
tsplink.trigger[N].pulsewidth (on page 7-223) 
tsplink.trigger[N].release() (on page 7-223) 
tsplink.trigger[N].stimulus (on page 7-224) 
tsplink.trigger[N].wait() (on page 7-225) 

 

tsplink.trigger[N].clear() 
This function clears the event detector for a LAN trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tsplink.trigger[N].clear() 
 

N The trigger line (1 to 3) to clear 
 

Details 

The trigger event detector enters the detected state when an event is detected. 
tsplink.trigger[N].clear() clears a trigger event detector, discards the history of the trigger 
line, and clears the tsplink.trigger[N].overrun attribute. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-220 707B-901-01 Rev. B / January 2015 

 

Example 
 

tsplink.trigger[2].clear() Clears trigger event on synchronization line 2. 

Also see 

tsplink.trigger[N].mode (on page 7-220) 
tsplink.trigger[N].overrun (on page 7-222) 
tsplink.trigger[N].release() (on page 7-223) 
tsplink.trigger[N].stimulus (on page 7-224) 
tsplink.trigger[N].wait() (on page 7-225) 

 

tsplink.trigger[N].EVENT_ID 
This constant identifies the number that is used for the trigger events. 

Type TSP-Link accessible Affected by Where saved Default value 
Constant Yes    
 

Usage 

eventID = tsplink.trigger[N].EVENT_ID 
 

eventID The trigger event number 
N The trigger line (1 to 3) 

 

Details 

This number is used by the TSP-Link trigger line when it detects an input trigger. 
Set the stimulus of any trigger object to the value of this constant to have the trigger object respond to 
trigger events from this line. 

Example 
 

trigger.timer[1].stimulus = tsplink.trigger[2].EVENT_ID Sets the trigger stimulus 
of trigger timer 1 to the 
TSP-Link trigger 2 event. 

Also see 

None 
 

tsplink.trigger[N].mode 
This attribute defines the trigger operation and detection mode. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 
TSP-Link trigger N reset 

Create 
configuration script  

0 (tsplink.TRIG_BYPASS) 

Usage 

mode = tsplink.trigger[N].mode 
tsplink.trigger[N].mode = mode 
 

mode The trigger mode 
N The trigger line (1 to 3) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-221 

 

Details 

This attribute controls the mode in which the trigger event detector and the output trigger generator 
operate on the given trigger line. 

 

The setting for mode can be one of the following values: 
 

Mode Number 
value 

Description 

tsplink.TRIG_BYPASS 0 Allows direct control of the line as a digital I/O line. 

tsplink.TRIG_FALLING 1 Detects falling-edge triggers as input. Asserts a TTL-low pulse 
for output. 

tsplink.TRIG_RISING 2 If the programmed state of the line is high, the 
tsplink.TRIG_RISING mode behaves similarly to 
tsplink.TRIG_RISINGA. 
If the programmed state of the line is low, the 
tsplink.TRIG_RISING mode behaves similarly to 
tsplink.TRIG_RISINGM. 
Use tsplink.TRIG_RISINGA if the line is in the high output 
state. 
Use tsplink.TRIG_RISINGM if the line is in the low output 
state. 

tsplink.TRIG_EITHER 3 Detects rising- or falling-edge triggers as input. Asserts a 
TTL-low pulse for output. 

tsplink.TRIG_SYNCHRONOUSA 4 Detects the falling-edge input triggers and automatically 
latches and drives the trigger line low. 

tsplink.TRIG_SYNCHRONOUS 5 Detects the falling-edge input triggers and automatically 
latches and drives the trigger line low. Asserts a TTL-low pulse 
as an output trigger. 

tsplink.TRIG_SYNCHRONOUSM 6 Detects rising-edge triggers as an input. Asserts a TTL-low 
pulse for output. 

tsplink.TRIG_RISINGA 7 Detects rising-edge triggers as input. Asserts a TTL-low pulse 
for output. 

tsplink.TRIG_RISINGM 8 Edge detection as an input is not available. Generates a 
TTL-high pulse as an output trigger. 

 
 

When programmed to any mode except tsplink.TRIG_BYPASS, the output state of the I/O line is 
controlled by the trigger logic, and the user-specified output state of the line is ignored. 
When the trigger mode is set to tsplink.TRIG_RISING, the user-specified output state of the line 
is examined. If the output state selected when the mode is changed is high, the actual mode used will 
be tsplink.TRIG_RISINGA. If the output state selected when the mode is changed is low, the 
actual mode used will be tsplink.TRIG_RISINGM. 
mode stores the trigger mode as a numeric value when the attribute is read. 
To control the line state, use the tsplink.TRIG_BYPASS mode with the tsplink.writebit() 
and the tsplink.writeport() commands. 

 

Example 
 

tsplink.trigger[3].mode = tsplink.TRIG_RISINGM Sets the trigger mode for 
synchronization line 3 to 
tsplink.TRIG_RISINGM. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-222 707B-901-01 Rev. B / January 2015 

 

Also see 

digio.writebit() (on page 7-61) 
digio.writeport() (on page 7-62) 
tsplink.trigger[N].assert() (on page 7-219) 
tsplink.trigger[N].clear() (on page 7-219) 
tsplink.trigger[N].overrun (on page 7-222) 
tsplink.trigger[N].release() (on page 7-223) 
tsplink.trigger[N].reset() (on page 7-224) 
tsplink.trigger[N].stimulus (on page 7-224) 
tsplink.trigger[N].wait() (on page 7-225) 

 

tsplink.trigger[N].overrun 
This attribute indicates if the event detector ignored an event while in the detected state. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (R) Yes Instrument reset 
Recall setup 
TSP-Link trigger N clear 
TSP-Link trigger N reset 

Not applicable Not applicable 

 

Usage 

overrun = tsplink.trigger[N].overrun 
 

overrun Trigger overrun state 
N The trigger line (1 to 3) 

 

Details 

This command indicates whether an event has been ignored because the event detector was already 
in the detected state when the event occurred. 
This is an indication of the state of the event detector built into the synchronization line itself. 
It does not indicate if an overrun occurred in any other part of the trigger model, or in any other 
construct that is monitoring the event. It also is not an indication of an output trigger overrun. 

 

Example 
 

print(tsplink.trigger[1].overrun) If an event was ignored, displays 
true; if an event was not ignored, 
displays false. 

 

Also see 

tsplink.trigger[N].assert() (on page 7-219) 
tsplink.trigger[N].clear() (on page 7-219) 
tsplink.trigger[N].mode (on page 7-220) 
tsplink.trigger[N].release() (on page 7-223) 
tsplink.trigger[N].reset() (on page 7-224) 
tsplink.trigger[N].stimulus (on page 7-224) 
tsplink.trigger[N].wait() (on page 7-225) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-223 

 

tsplink.trigger[N].pulsewidth 
This attribute sets the length of time that the trigger line is asserted for output triggers. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Reset 
TSP-Link trigger N reset 

Create configuration script 10e-6 (10 µs) 

Usage 

width = tsplink.trigger[N].pulsewidth 
tsplink.trigger[N].pulsewidth = width 
 

width The pulse width (in seconds) 
N The trigger line (1 to 3) 

 

Details 

Setting the pulse width to 0 (seconds) asserts the trigger indefinitely. 

Example 
 

tsplink.trigger[3].pulsewidth = 20e-6 Sets pulse width for trigger line 3 to 20 μs. 

Also see 

tsplink.trigger[N].release() (on page 7-223) 
 

tsplink.trigger[N].release() 
This function releases a latched trigger on the given TSP-Link trigger line. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tsplink.trigger[N].release() 
 

N The trigger line (1 to 3) 
 

Details 

Releases a trigger that was asserted with an indefinite pulse width. It also releases a trigger that was 
latched in response to receiving a synchronous mode trigger. 

Example 
 

tsplink.trigger[3].release() Releases trigger line 3. 

Also see 

tsplink.trigger[N].assert() (on page 7-219) 
tsplink.trigger[N].clear() (on page 7-219) 
tsplink.trigger[N].mode (on page 7-220) 
tsplink.trigger[N].overrun (on page 7-222) 
tsplink.trigger[N].pulsewidth (on page 7-223) 
tsplink.trigger[N].stimulus (on page 7-224) 
tsplink.trigger[N].wait() (on page 7-225) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-224 707B-901-01 Rev. B / January 2015 

 

tsplink.trigger[N].reset() 
This function resets some of the TSP-Link trigger attributes to their factory defaults. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tsplink.trigger[N].reset() 
 

N The trigger line (1 to 3) 
 

Details 

The tsplink.trigger[N].reset() function resets the following attributes to their factory 
defaults: 

• tsplink.trigger[N].mode 
• tsplink.trigger[N].stimulus 
• tsplink.trigger[N].pulsewidth 

This also clears tsplink.trigger[N].overrun. 

Example 
 

tsplink.trigger[3].reset() Resets TSP-Link trigger line 3 
attributes back to factory default 
values. 

Also see 

tsplink.trigger[N].mode (on page 7-220) 
tsplink.trigger[N].overrun (on page 7-222) 
tsplink.trigger[N].pulsewidth (on page 7-223) 
tsplink.trigger[N].stimulus (on page 7-224) 

 

tsplink.trigger[N].stimulus 
This attribute specifies the event that causes the synchronization line to assert a trigger. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Reset 
Recall setup 
TSP-Link trigger N reset 

Create 
configuration script 

0 

 

Usage 

eventID = tsplink.trigger[N].stimulus 
tsplink.trigger[N].stimulus = eventID 
 

eventID The event identifier for the triggering event 

N The trigger line (1 to 3) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-225 

 

Details 

To disable automatic trigger assertion on the synchronization line, set this attribute to zero (0). 
Do not use this attribute when triggering under script control. Use 
tsplink.trigger[N].assert() instead. 
The eventID parameter may be one of the existing trigger event IDs shown in the following table. 
 

Trigger event IDs 

Trigger event ID Description 

digio.trigger[N].EVENT_ID An edge (rising, falling, or either based on the configuration 
of the line) on the digital input line 

display.trigger.EVENT_ID The trigger key on the front panel is pressed 
trigger.EVENT_ID A *trg message on the active command interface. If GPIB is 

the active command interface, a GET message also 
generates this event 

trigger.blender[N].EVENT_ID A combination of events has occurred 
trigger.timer[N].EVENT_ID A delay expired 
tsplink.trigger[N].EVENT_ID An edge (rising, falling, or either based on the configuration 

of the line) on the TSP-Link® trigger line 
lan.trigger[N].EVENT_ID A LAN trigger event has occurred 
scan.trigger.EVENT_SCAN_READY Scan ready event 
scan.trigger.EVENT_SCAN_START Scan start event 
scan.trigger.EVENT_CHANNEL_READY Channel ready event 
scan.trigger.EVENT_SCAN_COMP Scan complete event 
scan.trigger.EVENT_IDLE Idle event 

 

Example 
 

print(tsplink.trigger[3].stimulus) Prints the event that will start TSP-Link trigger 
line 3 action. 

Also see 

tsplink.trigger[N].assert() (on page 7-219) 
tsplink.trigger[N].reset() (on page 7-224) 

 

tsplink.trigger[N].wait() 
This function waits for a trigger. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

triggered = tsplink.trigger[N].wait(timeout) 
 

triggered Trigger detection indication; set to one of the following values: 
true: A trigger is detected during the timeout period 
false: A trigger is not detected during the timeout period 

N The trigger line (1 to 3) 
timeout The timeout value in seconds 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-226 707B-901-01 Rev. B / January 2015 

 

Details 

This function waits up to the timeout value for an input trigger. If one or more trigger events were 
detected since the last time tsplink.trigger[N].wait() or tsplink.trigger[N].clear() 
was called, this function returns immediately. 
After waiting for a trigger with this function, the event detector is automatically reset and rearmed. 
This is true regardless of the number of events detected. 

 

Example 
 

triggered = tsplink.trigger[3].wait(10) 
print(triggered) 
 

Waits up to 10 seconds for a trigger 
on TSP-Link® line 3. 
If false is returned, no trigger was 
detected during the 10-second 
timeout. 
If true is returned, a trigger was 
detected. 

 

Also see 

tsplink.trigger[N].clear() (on page 7-219) 
 

tsplink.writebit() 
This function sets a TSP-Link synchronization line high or low. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tsplink.writebit(N, data) 
 

N The trigger line (1 to 3) 
data The value to write to the bit: 

• Low: 0 
• High: 1 

Details 

Use tsplink.writebit() and tsplink.writeport() to control the output state of the trigger 
line when trigger operation is set to tsplink.TRIG_BYPASS. 
If the output line is write-protected by the tsplink.writeprotect attribute, this command is 
ignored. 
The reset function does not affect the present states of the TSP-Link trigger lines. 

 

Example 
 

tsplink.writebit(3, 0) Sets trigger line 3 low (0). 

Also see 

tsplink.readbit() (on page 7-216) 
tsplink.readport() (on page 7-216) 
tsplink.writeport() (on page 7-227) 
tsplink.writeprotect (on page 7-227) 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-227 

 

tsplink.writeport() 
This function writes to all TSP-Link synchronization lines. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tsplink.writeport(data) 
 

data Value to write to the port (0 to 7) 
 

Details 

The binary representation of data indicates the output pattern that is written to the I/O port. For 
example, a data value of 2 has a binary equivalent of 010. Line 2 is set high (1), and the other two 
lines are set low (0). 
Write-protected lines are not changed. 
Use the tsplink.writebit() and tsplink.writeport() commands to control the output state 
of the synchronization line when trigger operation is set to tsplink.TRIG_BYPASS. 
The reset() function does not affect the present states of the trigger lines. 

Example 
 

tsplink.writeport(3) Sets the synchronization lines 1 and 2 high (binary 011). 

Also see 

tsplink.readbit() (on page 7-216) 
tsplink.writebit() (on page 7-226) 
tsplink.writeprotect (on page 7-227) 

 

tsplink.writeprotect 
This attribute contains the write-protect mask that protects bits from changes by the tsplink.writebit() and 
tsplink.writeport() functions. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) Yes Instrument reset 
Recall setup 

Create configuration script  0 

 

Usage 

mask = tsplink.writeprotect 
tsplink.writeprotect = mask 
 

mask An integer that specifies the value of the bit pattern for write-protect; set bits to 1 to 
write-protect the corresponding TSP-Link trigger line 

 

Details 

The binary equivalent of mask indicates the mask to be set for the TSP-Link trigger line. For example, 
a mask value of 5 has a binary equivalent of 101. This mask write-protects TSP-Link trigger lines 1 
and 3. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-228 707B-901-01 Rev. B / January 2015 

 

Example 
 

tsplink.writeprotect = 5 Write-protects TSP-Link trigger lines 1 and 3. 
 

Also see 

tsplink.readbit() (on page 7-216) 
tsplink.readport() (on page 7-216) 
tsplink.writebit() (on page 7-226) 
tsplink.writeport() (on page 7-227) 

 

tspnet.clear() 
This function clears any pending output data from the instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

tspnet.clear(connectionID) 
 

connectionID The connection ID returned from tspnet.connect() 
 

Details 

This function clears any pending output data from the device. No data is returned to the caller and no 
data is processed. 

 

Example 
 

tspnet.write(testdevice, "print([[hello]])") 
print(tspnet.readavailable(testdevice)) 
 
 
 
tspnet.clear(testdevice) 
print(tspnet.readavailable(testdevice)) 

Write data to a device, then print how much is 
available. 
Output: 
6.0000000e+00 
 
Clear data and print how much data is 
available again. 
Output: 
0.0000000e+00 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.readavailable() (on page 7-233) 
tspnet.write() (on page 7-239) 

 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-229 

 

tspnet.connect() 
This function establishes a network connection with another LAN instrument or device through the LAN interface. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

connectionID = tspnet.connect(ipAddress) 
connectionID = tspnet.connect(ipAddress, portNumber, initString) 
 

connectionID The connection ID to be used as a handle in all other tspnet function calls 
ipAddress IP address to which to connect in a string 
portNumber Port number (default 5025) 
initString Initialization string to send to ipAddress 

 

Details 

This command connects a device to another device through the LAN interface. If the portNumber is 
23, the interface uses the Telnet protocol and sets appropriate termination characters to 
communicate with the device. 
If a portNumber and initString are provided, it is assumed that the remote device is not 
TSP-enabled. The Model 707B or 708B does not perform any extra processing, prompt handling, 
error handling, or sending of commands. In addition, the tspnet.tsp.* commands cannot be used 
on devices that are not TSP-enabled. 

 

If neither a portNumber nor an initString is provided, the remote device is assumed to be a 
Keithley Instruments TSP-enabled device. Depending on the state of the 
tspnet.tsp.abortonconnect attribute, the Model 707B or 708B sends an abort command to 
the remote device on connection.  
The Model 707B or 708B also enables TSP prompts on the remote device and error management. 
The Model 707B or 708B places remote errors from the TSP-enabled device in its own error queue 
and prefaces these errors with Remote Error, followed by an error description.  
Do not manually change either the prompt functionality (localnode.prompts) or show errors by 
changing localnode.showerrors on the remote TSP-enabled device. If you do this, subsequent 
tspnet.tsp.* commands using the connection may fail. 
You can simultaneously connect to a maximum of 32 remote devices. 

 

Example 1 
 

instrumentID = tspnet.connect("192.0.2.1") 
if instrumentID then 
   -- Use instrumentID as needed here 
   tspnet.disconnect(instrumentID) 
end 

Connect to a TSP-enabled 
device. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-230 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

instrumentID = tspnet.connect("192.0.2.1", 1394, "*rst\r\n") 
if instrumentID then 
   -- Use instrumentID as needed here 
   tspnet.disconnect(instrumentID) 
end 

Connect to a device that is 
not TSP-enabled. 

Also see 

localnode.prompts (on page 7-123) 
localnode.showerrors (on page 7-127)  
tspnet.tsp.abortonconnect (on page 7-236) 
tspnet.disconnect() (on page 7-230) 

 

tspnet.disconnect() 
This function disconnects a specified TSP-Net session. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

tspnet.disconnect(connectionID) 
 

connectionID The connection ID returned from tspnet.connect() 
 

Details 

This function disconnects the two devices by closing the connection. The connectionID is the 
session handle returned by tspnet.connect(). 
For TSP-enabled devices, this aborts any remotely running commands or scripts. 

 

Example 
 

testID = tspnet.connect("192.0.2.0") 
-- Use the connection 
tspnet.disconnect(testID) 

Create a TSP-Net session. 
 
Close the session. 

Also see 

tspnet.connect() (on page 7-229) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-231 

 

tspnet.execute() 
This function sends a command string to the remote device. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

tspnet.execute(connectionID, commandString) 
value1 = tspnet.execute(connectionID, commandString, formatString) 
value1, value2 = tspnet.execute(connectionID, commandString, formatString) 
value1, ..., valueN = tspnet.execute(connectionID, commandString, formatString) 

 

 

connectionID The connection ID returned from tspnet.connect() 
commandString The command to send to the remote device 
value1 The first value decoded from the response message 
value2 The second value decoded from the response message 
valueN The Nth value decoded from the response message; there is one return value for 

each format specifier in the format string 
... One or more values separated with commas 
formatString Format string for the output 

 

Details 

This command sends a command string to the remote instrument. A termination is added to the 
command string when it is sent to the remote instrument (tspnet.termination()). You can also 
specify a format string, which causes the command to wait for a response from the remote 
instrument. The Models 707B and 708B decodes the response message according to the format 
specified in the format string and returns the message as return values from the function (see 
tspnet.read() for format specifiers). 
When this command is sent to a TSP-enabled instrument, the Model 707B or 708B suspends 
operation until a timeout error is generated or until the instrument responds. The TSP prompt from the 
remote instrument is read and discarded. The Model 707B or 708B places any remotely generated 
errors into its error queue.  When the optional format string is not specified, this command is 
equivalent to tspnet.write(), except that a termination is automatically added to the end of the 
command. 

Example 1 
 

tspnet.execute(instrumentID, "runScript()") Command the remote 
device to run a script 
named runScript. 

Example 2 
 

tspnet.termination(instrumentID, tspnet.TERM_CRLF) 
tspnet.execute(instrumentID, "*idn?") 
print("tspnet.execute returns:", tspnet.read(instrumentID)) 

Print the *idn? string from 
the remote device. 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.read() (on page 7-232) 
tspnet.termination() (on page 7-234) 
tspnet.write() (on page 7-239) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-232 707B-901-01 Rev. B / January 2015 

 

tspnet.idn() 
This function retrieves the response of the remote device to *IDN?. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

idnString = tspnet.idn(connectionID) 
 

idnString The returned *IDN? string 

connectionID The connection ID returned from tspnet.connect() 
 

Details 

This function retrieves the response of the remote device to *IDN?. 
 

Example 
 

deviceID = tspnet.connect("192.0.2.1") 
print(tspnet.idn(deviceID)) 
tspnet.disconnect(deviceID) 

Assume the instrument is at IP address 192.0.2.1. 
The output that is produced when you connect to the 
instrument and read the IDN string may appear as: 
KEITHLEY INSTRUMENTS INC.,MODEL 
707B,00000170,01.10h 

Also see 

tspnet.connect() (on page 7-229) 
 

tspnet.read() 
This function reads data from a remote device. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

value1 = tspnet.read(connectionID) 
value1 = tspnet.read(connectionID, formatString) 
value1, value2 = tspnet.read(connectionID, formatString) 
value1, ..., valueN = tspnet.read(connectionID, formatString) 
 

value1 The first value decoded from the response message 
value2 The second value decoded from the response message 
valueN The nth value decoded from the response message; there is one return value for 

each format specifier in the format string 
... One or more values separated with commas 
connectionID The connection ID returned from tspnet.connect() 
formatString Format string for the output, maximum of 10 specifiers 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-233 

 

Details 

This command reads available data from the remote instrument and returns responses for the 
specified number of arguments. 
The format string can contain the following specifiers: 
 

%[width]s Read data until the specified length 
%[max width]t Read data until the specified length or until punctuation is found, whichever comes first 
%[max width]n Read data until a newline or carriage return 
%d Read a number (delimited by punctuation) 

 

A maximum of 10 format specifiers can be used for a maximum of 10 return values. 
If formatString is not provided, the command returns a string that contains the data until a new 
line is reached. If no data is available, the Model 707B or 708B pauses operation until the requested 
data is available or until a timeout error is generated. Use tspnet.timeout to specify the timeout 
period. 
When the Model 707B or 708B reads from a TSP-enabled remote instrument, the Model 707B or 
708B removes Test Script Processor (TSP®) prompts and places any errors it receives from the 
remote instrument into its own error queue. The Model 707B or 708B prefaces errors from the remote 
device with "Remote Error," followed by the error number and error description. 

Example 
 

tspnet.write(deviceID, "*idn?\r\n") 
 
print("write/read returns:", tspnet.read(deviceID)) 

Send the "*idn?\r\n" message to 
the instrument connected as 
deviceID. 
Display the response that is read from 
deviceID (based on the *idn? 
message). 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.readavailable() (on page 7-233) 
tspnet.timeout (on page 7-235) 
tspnet.write() (on page 7-239) 

 

tspnet.readavailable() 
This function checks to see if data is available from the remote device. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

bytesAvailable = tspnet.readavailable(connectionID) 
 

bytesAvailable The number of bytes available to be read from the connection 
connectionID The connection ID returned from tspnet.connect() 

 

Details 

This command checks to see if any output data is available from the device. No data is read from the 
instrument. This allows TSP scripts to continue to run without waiting on a remote command to finish. 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-234 707B-901-01 Rev. B / January 2015 

 

Example 
 

ID = tspnet.connect("192.0.2.1") 
tspnet.write(ID, "*idn?\r\n") 
 
repeat bytes = tspnet.readavailable(ID) until bytes > 0 
 
print(tspnet.read(ID)) 
tspnet.disconnect(ID) 

Send commands that will create 
data. 
 
Wait for data to be available. 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.read() (on page 7-232) 

 

tspnet.reset() 
This function disconnects all TSP-Net sessions. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

tspnet.reset() 
 

Details 

This command disconnects all remote instruments connected through TSP-Net. For TSP-enabled 
devices, this causes any commands or scripts running remotely to be terminated. 

 

Also see 

None 
 

tspnet.termination() 
This function sets the device line termination sequence. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

type = tspnet.termination(connectionID) 
type = tspnet.termination(connectionID, termSequence) 
 

type 
 

An enumerated value indicating the termination type: 
• 1 or tspnet.TERM_LF 
• 4 or tspnet.TERM_CR 
• 2 or tspnet.TERM_CRLF 
• 3 or tspnet.TERM_LFCR 

connectionID The connection ID returned from tspnet.connect() 
termSequence The termination sequence 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-235 

 

Details 

This function sets and gets the termination character sequence that is used to indicate the end of a 
line for a TSP-Net connection. 
Using the termSequence parameter sets the termination sequence. The present termination 
sequence is always returned. 
For the termSequence parameter, use the same values listed in the table above for type. There are 
four possible combinations, all of which are made up of line feeds (LF or 0x10) and carriage returns 
(CR or 0x13). For TSP-enabled devices, the default is tspnet.TERM_LF. For devices that are not 
TSP-enabled, the default is tspnet.TERM_CRLF. 

 

Example 
 

deviceID = tspnet.connect("192.0.2.1") 
if deviceID then 
   tspnet.termination(deviceID, tspnet.TERM_LF) 
end 

Sets termination type for IP address 
192.0.2.1 to TERM_LF. 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.disconnect() (on page 7-230) 

 

tspnet.timeout 
This attribute sets the timeout value for the tspnet.connect(), tspnet.execute(), and tspnet.read() 
commands. 
  

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Instrument reset 
Recall setup 

Create configuration script 
Save setup 

20.0 (20 s) 

Usage 

value = tspnet.timeout 
tspnet.timeout = value 
 

value The timeout duration in seconds (0.001 to 30.0 s) 
 

Details 

This attribute sets the amount of time the tspnet.connect(), tspnet.execute(), and 
tspnet.read() commands will wait for a response. 
The time is specified in seconds. The timeout may be specified to millisecond resolution, but is only 
accurate to the nearest 10 ms. 

 

Example 
 

tspnet.timeout = 2.0 Sets the timeout duration to 2 s. 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.execute() (on page 7-231) 
tspnet.read() (on page 7-232) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-236 707B-901-01 Rev. B / January 2015 

 

tspnet.tsp.abort() 
This function causes the TSP-enabled instrument to stop executing any of the commands that were sent to it. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

tspnet.tsp.abort(connectionID) 
 

connectionID Integer value used as a handle for other tspnet commands 
 

Details 

This function is appropriate only for TSP-enabled instruments. 
Sends an abort command to the remote instrument. 

 

Example 
 

tspnet.tsp.abort(testConnection) Stops remote instrument execution on testConnection. 

Also see 

None 
 

tspnet.tsp.abortonconnect 
This attribute contains the setting for abort on connect to a TSP-enabled instrument. 

Type TSP-Link accessible Affected by Where saved Default value 

Attribute (RW) No Instrument reset 
Recall setup 

Create configuration script  1 (enable) 

Usage 

tspnet.tsp.abortonconnect = value 
value = tspnet.tsp.abortonconnect 
 

value • Enable: 1 
• Disable: 0 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-237 

 

Details 

This setting determines if the instrument sends an abort message when it attempts to connect to a 
TSP-enabled instrument using the tspnet.connect() function. 
When you send the abort command on an interface, it causes any other active interface on that 
instrument to close. If you do not send an abort command (or if tspnet.tsp.abortonconnect is 
set to 0) and another interface is active, connecting to a TSP-enabled remote instrument results in a 
connection. However, the instrument will not respond to subsequent reads or executes because 
control of the instrument is not obtained until an abort command has been sent. 

Example 
 

tspnet.tsp.abortonconnect = 0 Configure the instrument so that it does not 
send an abort command when connecting to 
a TSP-enabled instrument. 

Also see 

tspnet.connect() (on page 7-229) 
 

tspnet.tsp.rbtablecopy() 
This function copies a reading buffer synchronous table from a remote instrument to a TSP-enabled instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

table = tspnet.tsp.rbtablecopy(connectionID, name) 
table = tspnet.tsp.rbtablecopy(connectionID, name, startIndex, endIndex) 
 

table A copy of the synchronous table or a string 
connectionID Integer value used as a handle for other tspnet commands 
name The full name of the reading buffer name and synchronous table to copy 
startIndex Integer start value 
endIndex Integer end value 

 

Details 

This function is only appropriate for TSP-enabled instruments. 
This function reads the data from a reading buffer on a remote instrument and returns an array of 
numbers or a string representing the data. The startIndex and endIndex parameters specify the 
portion of the reading buffer to read. If no index is specified, the entire buffer is copied.  
The function returns a table if the table is an array of numbers; otherwise a comma-delimited string is 
returned. 
This command is limited to transferring 50,000 readings at a time. 

 

Example 1 
 

t = 
   tspnet.tsp.rbtablecopy(testConnection, 
   "testRemotebuffername.readings", 1, 3) 

print(t[1], t[2], t[3]) 

Copies the specified readings table for buffer 
items 1 through 3, then displays the first three 
readings. Example output: 
4.5653423423e-1 
4.5267523423e-1 
4.5753543423e-1 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-238 707B-901-01 Rev. B / January 2015 

 

Example 2 
 

times = 
   tspnet.tsp.rbtablecopy(testTspdevice, 

   "testRemotebuffername.timestamps", 1, 3) 
print(times) 

Copy the specified timestamps table for items 
1 through 3, then display the table. Example 
output: 
01/01/2011 

10:10:10.0000013,01/01/2011 
10:10:10.0000233,01/01/2011 
10:10:10.0000576 

Also see 

None 
 

tspnet.tsp.runscript() 
This function loads and runs a script on a remote TSP-enabled instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function Yes    

Usage 

tspnet.tsp.runscript(connectionID, script) 
tspnet.tsp.runscript(connectionID, name, script) 
 

connectionID Integer value used as an identifier for other tspnet commands 
name The name that is assigned to the script 
script The body of the script as a string 

Details 

This function is appropriate only for TSP-enabled instruments. 
This function downloads a script to a remote instrument and runs it. It automatically adds the 
appropriate loadscript and endscript commands around the script, captures any errors, and 
reads back any prompts. No additional substitutions are done on the text. 
The script is automatically loaded, compiled, and run. 

 

Any output from previous commands is discarded. 
This command does not wait for the script to complete. 
If you do not want the script to do anything immediately, make sure the script only defines functions 
for later use. Use the tspnet.execute() function to execute those functions at a later time. 
If no name is specified, the script is loaded as the anonymous script. 

 

Example 
 

tspnet.tsp.runscript(myconnection, "mytest", 
"print([[start]]) for d = 1, 10 do print([[work]]) end print([[end]])") 

Load and run a script entitled mytest on the TSP-enabled instrument connected with myconnection. 
 

Also see 

tspnet.execute() (on page 7-231) 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-239 

 

tspnet.write() 
This function writes a string to the remote instrument. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

tspnet.write(connectionID, inputString) 
 

connectionID The connection ID returned from tspnet.connect() 

inputString The string to be written 
 

Details 

The tspnet.write() function sends inputString to the remote instrument. It does not wait for 
command completion on the remote instrument. 
The Model 707B or 708B sends inputString to the remote instrument exactly as indicated. The 
inputString must contain any necessary new lines, termination, or other syntax elements needed 
to complete properly. 
Because tspnet.write() does not process output from the remote instrument, do not send 
commands that generate too much output without processing the output. This command can stop 
executing if there is too much unprocessed output from previous commands. 

 

Example 
 

tspnet.write(myID, "runscript()\r\n") Commands the remote instrument to execute 
a command or script named runscript() on 
a remote device identified in the system as 
myID. 

Also see 

tspnet.connect() (on page 7-229) 
tspnet.read() (on page 7-232) 

 

userstring.add() 
This function adds a user-defined string to nonvolatile memory. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

userstring.add(name, value) 
 

name The name of the string; the key of the key-value pair 
value The string to associate with name; the value of the key-value pair 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-240 707B-901-01 Rev. B / January 2015 

 

Details 

This function associates the string value with the string name and stores this key-value pair in 
nonvolatile memory. 
Use the userstring.get() function to retrieve the value associated with the specified name. 
You can use the userstring functions to store custom, instrument-specific information in the 
instrument, such as department number, asset number, or manufacturing plant location. 

 

Example 
 

userstring.add("assetnumber", "236") 
userstring.add("product", "Widgets") 
userstring.add("contact", "John Doe") 
for name in userstring.catalog() do 
   print(name .. " = " .. 
      userstring.get(name)) 
end 

Stores user-defined strings in nonvolatile 
memory and recalls them from the 
instrument using a for loop. 

Also see 

userstring.catalog() (on page 7-240) 
userstring.delete() (on page 7-241) 
userstring.get() (on page 7-242) 

 

userstring.catalog() 
This function creates an iterator for the user-defined string catalog. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

for name in userstring.catalog() do body end 
 

name The name of the string; the key of the key-value pair 
body Code to execute in the body of the for loop 

 

Details 

The catalog provides access for user-defined string pairs, allowing you to manipulate all the key-value 
pairs in nonvolatile memory. The entries are enumerated in no particular order. 

 

Example 1 
 

for name in userstring.catalog() do 
   userstring.delete(name) 
end 

Deletes all user-defined strings in nonvolatile 
memory. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-241 

 

Example 2 
 

for name in userstring.catalog() do 
   print(name .. " = " .. 
      userstring.get(name)) 
end 

Prints all userstring key-value pairs. 
Output: 
product = Widgets 
assetnumber = 236 
contact = John Doe 
The above output lists the user-defined strings 
added in the example for the userstring.add() 
function. Notice the key-value pairs are not listed in 
the order they were added. 

Also see 

userstring.add() (on page 7-239) 
userstring.delete() (on page 7-241) 
userstring.get() (on page 7-242) 

 

userstring.delete() 
This function deletes a user-defined string from nonvolatile memory. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

userstring.delete(name) 
 

name The name (key) of the key-value pair of the user-defined string to delete 
 

Details 

This function deletes the string that is associated with name from nonvolatile memory. 
 

Example 
 

userstring.delete("assetnumber") 
userstring.delete("product") 
userstring.delete("contact") 

Deletes the user-defined strings associated with the 
assetnumber, product, and contact names. 

 

Also see 

userstring.add() (on page 7-239) 
userstring.catalog() (on page 7-240) 
userstring.get() (on page 7-242) 

 



Section 7: TSP command reference Models 707B and 708B Switching Matrix Reference Manual 
 

7-242 707B-901-01 Rev. B / January 2015 

 

userstring.get() 
This function retrieves a user-defined string from nonvolatile memory. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

value = userstring.get(name) 
 

value The value of the user-defined string key-value pair 
name The name (key) of the user-defined string 

 

Details 

This function retrieves the string that is associated with name from nonvolatile memory. 
 

Example 
 

value = userstring.get("assetnumber") 
print(value) 

Read the value associated with a user-defined 
string named "assetnumber". 
Store it in a variable called value, then print the 
variable value. 
Output: 
236 

Also see 

userstring.add() (on page 7-239) 
userstring.catalog() (on page 7-240) 
userstring.delete() (on page 7-241) 

 
 

waitcomplete() 
This function waits for all overlapped commands to complete. 

Type TSP-Link accessible Affected by Where saved Default value 
Function No    

Usage 

waitcomplete() 
waitcomplete(group) 
 

group Specifies which TSP-Link group on which to wait 
 



Models 707B and 708B Switching Matrix Reference Manual Section 7: TSP command reference 
 

707B-901-01 Rev. B / January 2015 7-243 

 

Details 

This function will wait for all previously started overlapped commands to complete.  
Currently, the Models 707B and 708B have no overlapped commands implemented. However, other 
TSP-enabled products, such as the Series 2600A System SourceMeter® Instruments, have  
overlapped commands. Therefore, when the Model 707B or 708B is a TSP master to a subordinate 
device with overlapped commands, use this function to wait until all overlapped operations are 
completed. 
A group number may only be specified when this node is the master node. 
If no group is specified, the local group is used. 
If zero (0) is specified for the group, this function waits for all nodes in the system. 

Any nodes that are not assigned to a group (group number is 0) are part of the master node's group. 
 

Example 1 
 

waitcomplete() Waits for all nodes in the local group. 
 

Example 2 
 

waitcomplete(G) Waits for all nodes in group G. 
 

Example 3 
 

waitcomplete(0) Waits for all nodes on the TSP-Link network. 

Also see 

None 
 

 





 

 

In this section: 

Troubleshooting guide .............................................................. 8-1 
Error and status messages ...................................................... 8-1 
USB troubleshooting ................................................................ 8-2 
Troubleshooting GPIB interfaces ............................................. 8-5 
Troubleshooting LAN interfaces ............................................... 8-5 
Testing the display, keys, and channel matrix .......................... 8-9 
Update drivers ........................................................................ 8-10 
Contacting support ................................................................. 8-10 

 
 

Troubleshooting guide 
This section provides information to help you troubleshoot problems with your instrument. 

 

Error and status messages 
This section includes information on error levels and how to read errors. 

 

Error summary 
Error and status messages are assigned a level of severity, as listed in the table below. 

 

 

Severity level descriptions 

Number Level Description 

0 Informational Indicates that there are no entries in the queue 
10 Informational Indicates a status message or minor error 

20 Recoverable Indicates possible invalid user input; operation continues but action 
should be taken to correct the error 

30 Serious Indicates a serious error that may require technical assistance, such as 
corrupted data 

40 Fatal Instrument is not operational 
 
 

Section 8 

Troubleshooting guide 



Section 8: Troubleshooting guide Models 707B and 708B Switching Matrix Reference Manual 
 

8-2 707B-901-01 Rev. B / January 2015 

 

Effects of errors on scripts 
Most errors will not abort a running script. The only time a script is aborted is when a Lua runtime 
error (error number –286) is detected. 

Runtime errors are caused by actions such as trying to index into a variable that is not a table. 

Syntax errors (error number -285) in a script or command will not abort the script, but will prevent the 
script or command from being executed. 

 

Retrieving errors 
When errors occur, the error messages are placed in the error queue. Use error queue commands to 
request error message information. For example, the following commands request the next complete 
error information from the error queue and return the code, message, severity, and node for that 
error: 
errorCode, message, severity, errorNode = errorqueue.next() 
print(errorCode, message, severity, errorNode) 

 

The following table lists the commands associated with the error queue. 

 

Remote commands associated with the error queue 

Command Description 

errorqueue.clear() (on page 7-82) Clear error queue of all errors 
errorqueue.count (on page 7-83) Number of messages in the error queue 

errorqueue.next() (on page 7-83) Request next error message from 
queue 

 

USB troubleshooting 
This section provides information checks you can perform if the USB communication with the 
instrument is not working. 

 

Check driver for the USB Test and Measurement Device 
1. Open Device Manager. 

 

From the Start menu, you can enter Devmgmt.msc in the Run box or the Windows 7 search box to 
start Device Manager. 

2. Under USB Test and Measurement Devices, look for USB Test and Measurement Device. 
 
If the device is not there, either VISA is not installed or the instrument is not plugged in and 
switched on. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 8: Troubleshooting guide 
 

707B-901-01 Rev. B / January 2015 8-3 

 

Figure 96: Device Manager dialog box showing USB Test and Measurement Device 

 
 

3. Right-click the device. 
4. Select Properties. 
5. Select the Driver tab. 
6. Click Driver Details. 
7. Verify that the device driver is the winusb.sys. driver from Microsoft. 

 



Section 8: Troubleshooting guide Models 707B and 708B Switching Matrix Reference Manual 
 

8-4 707B-901-01 Rev. B / January 2015 

 

Figure 97: Driver File Details dialog box 

 
 

8. If the incorrect driver is installed, click OK. 
9. On the Driver tab, click Update Driver. 
10. Browse for the driver; select the C:\windows\inf folder. Locate the winusb.inf file. Select 

this and make sure the driver is now in use. 
11. If this does not work, uninstall VISA, unplug the instrument and follow the steps to reinstall VISA 

in the section Modifying, repairing, or removing Keithley I/O Layer software (on page 2-61). 
 



Models 707B and 708B Switching Matrix Reference Manual Section 8: Troubleshooting guide 
 

707B-901-01 Rev. B / January 2015 8-5 

 

Troubleshooting GPIB interfaces 

Controller (hardware) not recognized 
If the hardware is not recognized by the computer: 

1. Uninstall the software drivers. 
2. Reboot the computer. 
3. Check for newer drivers on the vendor’s website. Check that the drivers are valid for the 

operating system you have and any updates that might be necessary. This information is typically 
found in the readme file that comes with the drivers. 

4. Install software drivers. 
5. Reboot the computer. 
6. Plug in the hardware. 

If it is still not recognized, you can try a different computer using a different operating system to rule 
out operating system issues. 

If this does not resolve the issue, contact the vendor of the GPIB controller for assistance. 
 

Timeout errors 
If your GPIB controller is recognized by the operating system, but you get a timeout error when you 
try to communicate with the instrument, check the following: 

1. Confirm that the GPIB address you assigned to the instrument is unique and between the range 
of 0 to 30. It should not be 0 or 21 because they are common controller addresses. 

2. Check cabling connection. GPIB cables are heavy and can fall out of the connectors if they are 
not screwed in securely. 

3. Substitute cables to verify cable integrity. For example, if you can send and receive ASCII text, 
but you cannot do a binary transfer, check your program and the decoding of the binary data. If 
that does not resolve the problem, try another cable. ASCII text only uses seven data lines in the 
cable; the binary transfer requires all eight lines. 

 

Troubleshooting LAN interfaces 
This section provides information on troubleshooting LAN interfaces. 

For detailed information on setting up remote interfaces see Remote communications interfaces (on 
page 4-4). 

 



Section 8: Troubleshooting guide Models 707B and 708B Switching Matrix Reference Manual 
 

8-6 707B-901-01 Rev. B / January 2015 

 

Verify connections and settings 
If you are unable to connect to the instrument's internal web page, check the following items: 

• Verify that the crossover cable is in the correct LAN port on the instrument. Do not connect to one 
of the TSP-Link ports. 

• Verify that the crossover cable is in the correct port on the computer. The Ethernet port of a 
laptop may be disabled while the computer is in a docking station. 

• Verify that the correct Ethernet card configuration information was used during the setup 
procedure. 

• Verify that the computer's network card is enabled. 
• Verify the instrument IP address is compatible with the IP address on the computer. 
• Verify the instrument subnet mask address is the same as the computer's subnet mask address. 
• Turn the instrument power off, and then on. 
• Reboot the computer. 

 

Use Ping to test the connection 
Ping is a computer network administration utility that you can use to test whether a particular host can 
be reached across an Internet Protocol (IP) network. It also measures the round-trip time for packets 
sent from the local host to a destination computer, including the local host's own interfaces. 

To run Ping: 

1. From the Windows Start menu, type cmd in the Run box or Search box. The Command window is 
displayed. 

2. At the > prompt, type ping followed by the IP address. For example: 
      ping 169.254.52.51 

Beware that some network devices, especially LXI instruments, can disable the ping response to 
prevent denial of service attacks. This prevents hackers from pinging your instrument indefinitely, 
which causes the instrument to become so busy it cannot respond to a web browser or instrument 
driver. 

If you cannot ping an instrument from the computer, you will not be able to communicate with the 
instrument. You will need to check the LAN settings from the front panel of the instrument to see if 
they match the configuration of your network. 

If you can ping your instrument, you should be able to bring up the web page in the instrument from a 
browser by typing the IP address in the address (URL) field. 

 



Models 707B and 708B Switching Matrix Reference Manual Section 8: Troubleshooting guide 
 

707B-901-01 Rev. B / January 2015 8-7 

 

Open ports on firewalls 
A firewall is a part of a computer system or network that is designed to block unauthorized access 
while permitting authorized communications. It is a device or set of devices that are configured to 
permit or deny applications based on a set of rules and other criteria. 

If you have a firewall in the network between your computer and the instrument, you need to make 
sure the following ports are opened for UDP and TCP packets: 

• Port 80: Web server. This is normally open. 
• Port 1024: VXI-11 connection for sending and receiving commands from the instrument. 
• Port 5025: Raw socket connection for sending and receiving commands from the instrument. 

 

Web page problems 
All LXI instruments have a web server. The LAN configuration information on these pages is 
mandated by the LXI consortium. For Keithley’s LXI instruments, the standard LXI pages use 
standard HTML. 

The added value pages that Keithley has added to control the instruments use Java. If Java is not 
installed when you select one of these instrument-specific web pages, the web page prompts you to 
install it. To do this, your computer must have access to the Internet so it can access the web browser 
plug-in Sun Java Runtime Environment Version 6 or higher. Installation files are available at the Java 
download site (http://www.java.com/en/download/manual.jsp). 

When you connect to the instrument web page for the first time, several things can happen: 

• If the security settings are high, scripting might be disabled and the browser will prompt you to 
enable ActiveX and scripting. 

• If Java is not installed, the browser will prompt you to install it and provide a link to the download. 
If you do not have an Internet connection, you must download it elsewhere and install it on the 
computer that it connected to the instrument. 

• When the Java applet from the instrument gets downloaded into the browser it will ask you if you 
trust this active content from Keithley Instruments. Select Yes. 

If you have resolved the problems, the instrument control pages should work and if you try to perform 
an action, such as closing a relay, you are prompted for the password (the default is “admin”). 

If you update the firmware for the instrument using the web page (not available for all instruments), 
you need to flush the browser cache so that a fresh Java Applet gets downloaded the next time you 
access the web page. 

 

http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/manual.jsp


Section 8: Troubleshooting guide Models 707B and 708B Switching Matrix Reference Manual 
 

8-8 707B-901-01 Rev. B / January 2015 

 

LXI LAN status indicator 
Most LAN network interface cards have two LEDs, one that indicates LAN traffic and one that 
designates the LAN speed (10 MBits, 100 MBits, 1 GBits) through the color of the LED. LXI goes one 
level higher than this and states that all LXI compliant devices need a LAN status indicator. This can 
be an LED or an indicator on a display. It shows if the instrument has a valid IP address or is in a fault 
state. 

When diagnosing a LAN connection issue with an LXI instrument, see if the LAN status indicator is 
signaling a valid or fault condition. If there is an error, you cannot communicate with the instrument 
through the LAN connection. In this case, you need to check the LAN parameter settings from the 
front panel of the instrument. Make sure if you change a LAN setting through the front panel that you 
select the “Apply LAN Settings” for the changes to take affect. 

 

Initialize the LAN configuration 
The LXI specification mandates that all instruments that conform to LXI need a LAN reset 
mechanism.This can be a recessed switch or a menu option on the front panel that will put all the 
LAN settings back to known defaults. If you cannot communicate with your instrument, perform this 
reset. 

If you perform a reset, the instrument is returned to DHCP and Auto-IP enabled. If you set your 
computer to match, you should be able to use a discovery tool to determine the IP address and 
communicate with the instrument again. Also check the LAN status indicator to verify that there are 
no faults. 

To reset the Model 707B or 708B, from the front panel, select MENU, then select LAN > RESET. 
 

Install LXI Discovery Browser software on your computer 
You can use the LXI Discovery Browser to identify the IP addresses of LXI-certified instruments. 
Once identified, you can double-click the IP address in the LXI Discovery Browser to open the web 
interface for the instrument. 

The Keithley LXI Discovery Browser is available on the Keithley Instruments website 
(http://www.keithley.com). 

To locate the Keithley LXI Discovery Browser on the Keithley website: 
1. Select the Support tab. 
2. In the model number box, type 707B. 
3. From the list, select Software and click the search icon. A list of software applications for the 

instrument is displayed. 
4. See the readme file included with the application for more information. 

For more information about the LXI Consortium, see the LXI Consortium website 
(http://www.lxistandard.org/). 

 

http://www.keithley.com/
http://www.lxistandard.org/


Models 707B and 708B Switching Matrix Reference Manual Section 8: Troubleshooting guide 
 

707B-901-01 Rev. B / January 2015 8-9 

 

Communicate using VISA communicator 
There are several interactive communication utilities that you can use to communicate with LAN 
instruments: 

• The KIOL installs the Keithley Communicator. 
• NI VISA (full version) installs the NI VISA Interactive Control utility, which can also be launched 

from NI-MAX. 
• Agilent has a similar utility called Interactive IO that gets installed with their IO Libraries Suite. 

All these utilities require you to enter the VISA resource string for your instrument. See Communicate 
with the instrument (on page 2-23) for more information on the VISA resource string formats. 

HyperTerminal, which comes with Microsoft Windows, also allows you to connect to the raw socket 
port of the instrument. 

 

WireShark 
WireShark is an open source LAN packet sniffer. You can run it to spy on all the packets going across 
a network. It allows you to filter what you spy on so that you can narrow the content down to just what 
you are interested in. For example, you could check just web page packets (http) or all packets being 
sent by a device on a certain IP address. 

Refer to the WireShark documentation for information. WireShark can be downloaded from 
www.wireshark.org (http://www.wireshark.org). 

 

Testing the display, keys, and channel matrix 
You can test operation of the keys, display, and crosspoint display (707B only) from the front panel of 
the instrument. 

 

Verify front panel key operation 
You can verify that the instrument is properly reading front panel key presses. 
To verify key operation: 
1. From the front panel, select MAIN MENU > DISPLAY > TEST > KEYS. The message "No keys 

pressed" is displayed. 
2. Press a key. The name of the key is displayed. For a list of key values, see display.sendkey() (on 

page 7-76). 
3. Press EXIT (LOCAL) twice to return to the menu. 

 

Verify display operation 
You can verify that all the pixels on the vacuum fluorescent display (VFD) are working. 
To verify VFD operation: 
1. From the front panel, select MAIN MENU > DISPLAY > TEST > DISPLAY-PATTERNS. A pattern 

is displayed. 
2. Press the navigation wheel to display the next pattern. 
3. When you have viewed the patterns, press EXIT to return to the menu. 

 

http://www.wireshark.org/


Section 8: Troubleshooting guide Models 707B and 708B Switching Matrix Reference Manual 
 

8-10 707B-901-01 Rev. B / January 2015 

 

Verify crosspoint display operation (707B only) 
You can verify that the LEDs and displays on the crosspoint display are working properly. 
To verify crosspoint display operation: 
1. From the front panel, select MAIN MENU > DISPLAY > TEST > LED-PATTERNS. The text 

"ALPH NUMERIC COL LEDS" is displayed. 
2. Press the navigation wheel to display first test. The name of the test is displayed on the bottom 

display. 
3. After each test, press the navigation wheel to move to the next test. 
4. On the last tests (STEP COL GRIP LED WHEEL TO DIAL), use the navigation wheel to check 

the matrix LEDs and the slot LEDs. 
5. When you have viewed the patterns, press EXIT to return to the menu. 

 

Update drivers 
For the latest drivers and additional support information, see the Keithley Instruments support 
website. 
To see what drivers are available for your instrument: 
1. Go to the Keithley Instruments support website (http://www.keithley.com/support). 
2. Enter the model number of your instrument. 
3. Select Software Driver from the list. 

For LabVIEWTM, you can also go to the National Instrument website and search their instrument 
driver database. 

 

Contacting support 
If you have any questions after reviewing this information, please contact your local Keithley 
Instruments representative or call Keithley Instruments corporate headquarters (toll-free inside the 
U.S. and Canada only) at 800-935-5595, or from outside the U.S. at +1-440-248-0400. For worldwide 
contact numbers, visit the Keithley Instruments website http://www.keithley.com. 

When contacting Keithley, please have ready: 

• The serial number of the instrument. 
• The firmware revision of the instrument. 
• The model and firmware revision of all installed cards. 

When you call, have the information available, and, if possible, be near the instrument. 
 

http://www.keithley.com/support
http://www.keithley.com/


Models 707B and 708B Switching Matrix Reference Manual Section 8: Troubleshooting guide 
 

707B-901-01 Rev. B / January 2015 8-11 

 

Locating serial number or firmware revision 

The serial number is on the rear panel of the instrument. You can also use the front panel MENU 
option to display the serial number and firmware version. 
To display serial number or firmware revision on the front panel: 
1. If the Model 707B or 708B is in remote mode, press the EXIT (LOCAL) key once to place the 

instrument in local mode. 
2. Press the MENU key. 
3. Use the navigation wheel  to scroll to the UNIT-INFO menu. 
4. Press the ENTER key. 

On the UNIT INFORMATION menu, scroll to the SERIAL# or FIRMWARE option and press the 
ENTER key. The Model 707B or 708B serial number is displayed. 

 

Locating information on the installed cards 
To identify installed switching cards from the front panel: 

Press the SLOT key to scroll through the model numbers, descriptions, and firmware revisions of the 
installed switching cards. 

 

To identify installed switching cards from the web interface: 
1. Select the Unit page. 
2. In the Report area, select the slots that you want information about. 
3. Select Firmware Revision. 
4. Click Generate Report. Information about the cards in the slots is displayed below the button. 

 

To identify installed switching cards from the remote command interface: 

Use print(slot[X].idn)to query and identify installed switching cards: 
print(slot[X].idn) 

Where: X = slot number (from 1 to 6) 
 

Example 

To get a list of all switching cards installed in the slots of a Model 707B or 708B, send the following 
command over the remote command interface: 
for x=1,6 do print (slot[x].idn) end 

 

The response will be similar to the following: 
7174, 8x12 Fast Low-I Matrix, 01.00a, <Module Serial Number> 
7072, 8x12 Semi Matrix, 01.00a, <Module Serial Number> 
Empty Slot 
Empty Slot 
Empty Slot 
Empty Slot 

 

 





 

 

In this section: 

Frequently asked questions ..................................................... 9-1 

 
 

Frequently asked questions 

How do I get my LAN or web connection to work? 
For troubleshooting suggestions, see Troubleshooting LAN interfaces (on page 8-5). 

For more detailed information on remote interface connections, see Remote communications 
interfaces (on page 4-4). 

 

Why can't I close a channel? 
The channel might be set to be forbidden to close. 
To check the forbidden state of a channel from the front panel: 
1. Display a channel (you might need to press DISPLAY). 
2. Use the navigation wheel  to select the channel you want to check. 
3. Press CONFIG, then press CHAN. 
4. Select FORBID. 
5. Press ENTER. 
6. Yes and No are displayed. The current selection blinks. To change the setting to allow the 

channel to close, select No. 
 

To check the forbidden state of a channel from the web interface: 
1. From the list on the left, select the slot that contains the channel. 
2. Right-click the channel. The Channel Configuration dialog box is displayed. 

 

Section 9 

Frequently asked questions 



Section 9: Frequently asked questions Models 707B and 708B Switching Matrix Reference Manual 
 

9-2 707B-901-01 Rev. B / January 2015 

 

Figure 98: Channel configuration dialog box 

 
 

3. If the forbidden box is selected, the channel is forbidden to close. To allow the channel to close, 
clear the box. 

4. Click OK to save the change. 
 

To check the forbidden state of a channel from a remote interface: 

You can also clear, check, and set the forbidden state of channels using the following commands: 

• channel.clearforbidden() (on page 7-16) 
• channel.getforbidden() (on page 7-27) 
• channel.setforbidden() (on page 7-42) 

 

How do I know if an error has occurred on my instrument? 
If you are using TSB Embedded, error messages are displayed in the Instrument Output box when 
they occur. 

If you are using another remote interface, you might need to use commands to retrieve the error 
messages. You can use the commands errorqueue.count (on page 7-83) and errorqueue.next() (on 
page 7-83) to retrieve the number of messages and the text of the messages. 

To set the instrument to automatically send generated errors, set localnode.showerrors (on page 7-
127) to 1 (enabled). 

To set the instrument to automatically send prompts after each command message, set 
localnode.prompts (on page 7-123) to 1 (enabled). 

 



Models 707B and 708B Switching Matrix Reference Manual Section 9: Frequently asked questions 
 

707B-901-01 Rev. B / January 2015 9-3 

 

How do I find the serial number and firmware version of the 
instrument? 

The serial number is on the rear panel of the instrument. You can also use the front panel MENU 
option to display the serial number and firmware version. 
To display serial number or firmware revision on the front panel: 
1. If the Model 707B or 708B is in remote mode, press the EXIT (LOCAL) key once to place the 

instrument in local mode. 
2. Press the MENU key. 
3. Use the navigation wheel  to scroll to the UNIT-INFO menu. 
4. Press the ENTER key. 

On the UNIT INFORMATION menu, scroll to the SERIAL# or FIRMWARE option and press the 
ENTER key. The Model 707B or 708B serial number is displayed. 

 

 





 

 

In this section: 

Additional Models 707B and 708B information....................... 10-1 

 
 

Additional Models 707B and 708B information 
For additional information about the Model 707B or 708B, refer to: 

• The Product Information CD-ROM (ships with the product): Contains software tools, drivers, and 
product documentation 

• The Keithley Instruments website http://www.keithley.com: Contains the most up-to-date 
information. From the website, you can access: 
• The Knowledge Center, which contains the following handbooks:  

• The Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance 
Measurements 

• Switching Handbook: A Guide to Signal Switching in Automated Test Systems 
• Application notes 
• Updated drivers 
• Information about related products, including: 

• Switch cards, including the Models 7072, 7072-HV, 7173-50, and 7174A 
• The Series 2600A System SourceMeter® Instruments 
• The Model 4200-SCS Semiconductor Characterization System 

• Your local Field Applications Engineer can help you with product selection, configuration, and 
usage. Check the website for contact information. 

 

 

Section 10 

Next steps 

http://www.keithley.com/




 

 

In this appendix: 

Maintenance ............................................................................. A-1 

 
 

Maintenance 

Upgrading firmware 
You can upgrade the instrument firmware from the web interface. 
To upgrade the firmware from the web interface: 
1. From the left navigation area, select Unit. 
2. Log in if necessary. 
3. From the Unit buttons, click Upgrade Firmware. 
4. A confirmation message is displayed. Click OK. 

 

5. A version message is displayed. Select the appropriate option.. 
6. Select the file. 
7. Click Open. A progress dialog box is displayed. When the upgrade begins, the front panel display 

will also display the progress. 
During the upgrade, you will see messages that indicate that the connection has been lost. This is 
normal. 

8. After the instrument power automatically turns off and then turns on again, it will be ready for use. 
  

If you have a GPIB or USB connection, you can also use TSB to upgrade the firmware. See the TSB 
help files for information. 

 

Appendix A 

Maintenance 



Appendix A: Maintenance Models 707B and 708B Switching Matrix Reference Manual 
 

A-2 707B-901-01 Rev. B / January 2015 

 

Check fan status 
You can check the status of the fan from the front panel of the Model 707B. 

In addition, if the fan is not operating on power up, the message "Failed to sense fan" is displayed. 
To check the fan status: 
1. From the front panel, select MAIN MENU > UNIT-INFO > FAN. 
2. Press the navigation wheel. The status is displayed: 

 Fan Normal: Fan is operating normally. 
 Fan Failure: Fan is not moving. 

3. Press EXIT to return to the menu. 

If the fan is not operating, contact Keithley Instruments. See Contacting support (on page 8-10). 
 

Fuse replacement 
The fuses on the Model 707B or 708B are located on the rear panel of the instrument, as shown 
below. 

Replacement fuses are listed in the following table. 

 

Replacement fuses 

Model Rating Keithley Instruments part number 

707B 250V, dual 2.0A slow blow Two FU-106-2.0 
708B 250V / 1.0A slow blow One FU-72 

Disconnect all external power from the equipment and the line cord before performing any 
maintenance on the Model 707B or 708B. 

Failure to disconnect all power may expose you to hazardous voltages, that, if contacted, 
could cause personal injury or death. Use appropriate safety precautions when working 
with hazardous voltages. 

To replace a fuse: 
1. Use a small flat-tip screwdriver to lift the tab at the bottom of the fuse module. 
2. Pull the fuse module out. 
3. Replace the fuse. 
4. Re-install the fuse module. 

If the fuse continues to blow, a circuit malfunction exists and must be corrected. Return the 
instrument to Keithley Instruments for repair. See Contacting support (on page 8-10). 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix A: Maintenance 
 

707B-901-01 Rev. B / January 2015 A-3 

 

 

Figure 99: 707B fuse location 

 

Figure 100: 708B fuse module location 

 
 



Appendix A: Maintenance Models 707B and 708B Switching Matrix Reference Manual 
 

A-4 707B-901-01 Rev. B / January 2015 

 

Fixed rack installation 
The Model 707B ships with a fixed rack-mounting kit. The following table lists the included hardware 
for a fixed mounting of the Model 707B in a 48.26 cm wide × 60.96 cm tall × 76.20 cm deep (19 in. 
× 24 in. × 30 in.) rack. Verify that you have all the necessary parts before beginning the installation 
procedure. 

The Model 708B ships without a rack-mount kit. To rack mount a Model 708B, contact your local 
Keithley Instruments office, sales partner, or distributor to order the Model 4299-6 Fixed Rack-Mount 
Kit. Installation instructions are included with the kit. 

 

Parts list for Model 707B rack mounting 

Item Description Keithley Part Number Quantity 

A Chassis support (left) 707-321 1 

B Chassis support (right) 707-322 1 

C Nut, #10-32 captive FA-148 4 

 Bracket kit consisting of: BR-31 1 

D Rear support bracket -- 2 

E Spacer bar -- 2 

F Nut bar -- 4 

G Screw, #10-32 × 1/2 in. Phillips 
Binder hardware 

-- 12 

 
 

Rack preparation 
To prepare the rack for Model 707B installation: 
1. Select a position in the rack. In most cases, the weight of the instrument dictates a position in the 

lower half of the rack. The Model 707B fills 35.56 cm (14 in.) of vertical space. 

The mainframe must be mounted at a height that is an increment of 4.45 cm (1.75 in.) from the top or 
bottom of the rack. Attempting to mount the mainframe at a nonincremental height will cause 
difficulties with hole alignment. 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix A: Maintenance 
 

707B-901-01 Rev. B / January 2015 A-5 

 

2. As shown in the following figure, install two captive nuts (item C) on each front rack flange at 
holes 28.89 cm (11.38 in.) and 33.05 cm (13.13 in.) from the top of the selected space. 

Figure 101: Captive nut installation 

 

3. Loosely attach a nut bar (item F) to each rear rack flange with two binder head screws (item G) 
(see the following figure). Mount the nut bars with the outer holes at the same level as the captive 
nuts. Note that the hole pattern on the nut bar is not symmetrical. 

Figure 102: Nut bar on flange 

 
 



Appendix A: Maintenance Models 707B and 708B Switching Matrix Reference Manual 
 

A-6 707B-901-01 Rev. B / January 2015 

 

Chassis support preparation 
To prepare the chassis support for Model 707B or 708B installation: 
1. Place a rear support bracket (item D) on the left chassis support (item A) and temporarily install 

the two pieces in the rack by sliding them apart until the flanged ends fit as shown in the following 
figure. Note which holes will be used to attach the two pieces together. 

Figure 103: Chassis support sizing 

 
 

2. Use a spacer bar, nut bar, and two binder head screws (items E, F, and G) to loosely attach each 
rear support bracket to a chassis support. The following figure shows the left side support. 

Figure 104: Chassis support assembly 

 
 



Models 707B and 708B Switching Matrix Reference Manual Appendix A: Maintenance 
 

707B-901-01 Rev. B / January 2015 A-7 

 

Chassis support mounting 
To mount the chassis support: 
1. Reinstall the chassis support assemblies in the rack and secure them to the captive nuts with 

binder head screws. Also tighten the binder screws at the rear rack flange. 
2. Tighten the screws attaching the two pieces of the chassis support assemblies. 

 

Mainframe installation 
To install the mainframe in the rack: 
1. Lift the Model 707B or 708B mainframe onto the chassis supports and slide it into the rack. 
2. The mainframe can be secured to the front rack flanges with user-supplied captive nuts and 

binder head screws (four each). 

The chassis supports hold the Model 707B or 708B in place while you are mounting the mainframe 
to the front rack flanges. Once the instrument is secured, there may be a gap between the 
mainframe and the chassis supports. 

 

 





 

 

In this appendix: 

Using Models 707A and 708A compatibility mode ................... B-1 

 
 

Using Models 707A and 708A compatibility mode 

Model A to Model B differences 
You can use a Model 707B or 708B in an existing Model 707A or 708A application. The units are 
compatible with the following exceptions: 

• Master/subordinate operation is not supported. 
• The digital I/O is limited to twelve bits for all models. 
• Relay test is not supported. 
• Some commands operate differently (see Models 707A and 708A commands (on page B-3)). 

When using Model 707A or 708A compatibility mode, the only compatible remote interface is GPIB. 

You can select one of two options when enabling Model 707A or 708A DDC compatibility mode: 

• 70xA-VERSION: This option most closely matches Model 707A or 708A operation. Use this 
version if you are transferring applications directly from a Model 707A or 708A with few changes. 

• 70xB-VERSION: This options provides enhanced operation, including error checking and more 
robust settling time operation. Use this version if you are updating existing applications. 

To enable Model 707A or 708A DDC compatibility mode: 
1. From the front panel, select MENU. 
2. Select DDC. 
3. Select ENABLE. 
4. Select the version. 
5. Press ENTER. 
6. Cycle instrument power. 

 

Front-panel relay closure indicators 
When you are using Model 707A or 708A compatibility mode, the channel information is displayed on 
the updated display. For information on the display, see Front-panel operation (on page 2-11). 

 

Appendix B 

Using Models 707A and 708A compatibility mode 



Appendix B: Using Models 707A and 708A compatibility mode Models 707B and 708B Switching Matrix Reference Manual 
 

B-2 707B-901-01 Rev. B / January 2015 

 

Models 707B and 708B channel notation is different than on the Models 707A and 708A. For Models 
707A and 708A, the slot number is built into the column number. For Models 707B and 708B, the 
slot number is the first number of the channel notation. For example, in Models 707A and 708A, 
crosspoint "A56" refers to slot 5, row A, column 8. This same crosspoint appears as "5A08" on the 
Models 707B and 708B front-panel display. However, with DDC emulation enabled, the Models 707B 
and 708B will accept "A56" and close the correct crosspoint. 

 

Timing issues 
The Models 707B and 708B run much faster than their predecessors. When using code from an older 
switch model, be aware that timing problems could be introduced into the system. 

 

Digital interface 
When you are using Model 707A or 708A compatibility mode, the digital I/O is fixed as follows: 

• Digital input: Digital I/O lines 1 to 6 
• Digital output: Digital I/O lines 7 to 12 
• External trigger: Digital I/O line 13 
• Matrix ready: Digital I/O line 14 

Refer to Digital I/O port (on page 2-7) for the pinout diagram for the digital I/O connector. 
 

Memory setups 
Memory setups are handled as a single channel pattern when you use Model 707A or 708A 
compatibility mode. 

The Model 707B or 708B supports 100 memory setups, in addition to the channel patterns normally 
available in the Model 707B or 708B. 

The memory patterns are named MEMSETUPxxx, where xxx is between 001 and 100. 

Memory patterns are created as they are used. 

You can work with memory patterns through TSP as you do with channel patterns. See Channel 
patterns (on page 2-92). 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix B: Using Models 707A and 708A compatibility mode 
 

707B-901-01 Rev. B / January 2015 B-3 

 

Models 707A and 708A commands 

 
Models 707A and 708A commands 

Command Description Differences in Models 707B and 708B 

An Edge for which an externally 
generated pulse executes a 
trigger 

None. 

Bn Select logic sense of matrix 
ready 

Actual matrix ready signal may have different timing 
characteristics. If a relay does not change state, the matrix 
ready signal does not include the relay settle time. 

Crc(,rc)..(,rc) Close crosspoints in a setup Actual ready and matrix ready signals may have different timing 
characteristics. 
The Ready signal includes the relay settle time. 
Subordinate units are not supported. 
 In the case of multiple commands, all crosspoints are closed 
simultaneously. 

Dnnnnnn Set text on the display Only available on Model 707B. The display character limit has 
been increased to 20 and the text is displayed on the first line of 
the VFD display. 

Db,s Set digital output Only available on Model 708B. The actual digital output settings 
will not function for bits that are outside of the physical interface 
specifications (see Digital interface (on page B-2)). 

En Specify setup number None. 
Fn Enable or disable triggers None. 
Gn Output format None. 
Hn Front panel key Only Model 707A. This command has no effect and does not 

issue an error message when used. 
In Insert blank setup None. 
Jn Self-test There is no self-test for the Models 707B and 708B. 
Kn EOI and hold off Actual ready and matrix ready signals may have different timing 

characteristics. The Ready signal on the Model 707B or 708B 
includes the relay settle time. 
The Models 707A and 708A could hold off the GPIB bus on the 
specific ‘X’ character. To increase performance, the Models 
707B and 708B use a message-based system. Therefore, the 
hold off has been changed to ‘hold off on end of message’. 
When the ‘X’ is at the end of the message, the functionality is 
identical. 

Lbbbb…X Download setup None. 
Mn SRQ and Serial Poll Byte Performing a self-test or pressing a key does not clear the SRQ 

Ready bit. 
Nrc(,rc)...(,rc

) 
Open crosspoint Actual ready and matrix ready signals may have different timing 

characteristics. The ready signal on the Model 707B or 708B 
includes the relay settle time. Subordinate units are not 
supported. 
All crosspoints are opened. For example, for the command 
“NA1NA2NA3”, all three crosspoints are opened. All crosspoints 
are opened simultaneously. 

Ovvv Digital output The actual digital output settings will not function for bits that are 
outside the physical interface specifications (see Digital 
interface (on page B-2)). 

Pn Clear crosspoints None. 
Qn Delete setup None. 
Rn Restore defaults None. 
Sn Programmable settle time Works as intended in 70xB-VERSION. 

For 70xA-VERSION, settle time is always zero (0). 



Appendix B: Using Models 707A and 708A compatibility mode Models 707B and 708B Switching Matrix Reference Manual 
 

B-4 707B-901-01 Rev. B / January 2015 

 

Tn Trigger source The trigger source 0/1 (GPIB Talk) is not available for the 
Models 707B and 708B. The factory default address for the 
Models 707B and 708B is 16. The trigger source 8/9 (front panel 
key) is not implemented. 

Un Instrument Config/Status For U0, the last pressed key always reads 05. 
For U1, the Self-Test, PowerUp, and Master/Subordinate Loop 
bits always read zero.  
For U4, the number is always zero. 
For U5, the subordinates always read zero. 
For U7, though compatible bits are returned, the actual digital 
input settings read zero for those bits outside of the physical 
interface specifications (see digital input/output difference). 
For U8, the test relay is not supported and always reads 15. 

Vabcdefgh Make before break None. 
Wabcdefgh Break before make None. 
<cmd>X Execute None. 
Yn Change line terminate None. 
Zm,n Copy setup None. 
<space> Model and version Sending a <space> only in a message causes the unit to return 

the model and version number. 
*idn? Unit identification For compatibility, the version number is A03 (version number of 

DDC compatibility, not the firmware version). For example, on 
the Model 707A, the return string is "707A03". 

 

There is a limit of 64 commands per execution. 

For more detail on the Model 707A and 708A commands, see the appropriate instruction manual: 

• For the Model 707A: 707A-901-01 (A - Sep 1998)(Instruction).pdf 
• For the Model 708A: 708A-901-01 (A - Sep 1998)(Instruction).pdf 

These instruction manuals are available on the Keithley Instruments support website 
(http://www.keithley.com/support). 

 

 

http://www.keithley.com/support


 

 

In this appendix: 

Status model ........................................................................... C-1 

 
 

Status model 

Overview 
Each Keithley Instruments Models 707B and 708B provides a number of status registers and queues 
that are collectively referred to as the status model. Through manipulation and monitoring of these 
registers and queues, you can view and control various instrument events. You can include 
commands in your test program that can determine if a service request (SRQ) event has occurred 
and the cause of the event. 

The heart of the status model is the Status Byte Register. All status model registers and queues flow 
into the Status Byte Register. 

The entire status model is illustrated in the Status model diagrams. 
 

Status Byte Register 
The Status Byte Register receives summary bits from the other status register sets and queues, and 
also from itself (which sets the Master Summary Status, or MSS, bit). For details, see Status Byte 
Register (on page C-16). 

 

Status register set contents 

Typically, a status register set contains the following registers: 

• Condition (.condition): A read-only register that is constantly updated to reflect the present 
operating conditions of the instrument. 

• Enable Register (.enable): A read-write register that allows a summary bit to be set when an 
enabled event occurs. 

• Event Register (.event): A read-only register that sets a bit to 1 when the applicable event 
occurs. If the enable register bit for that event is also set, the summary bit of the register will set 
to 1. 

• Negative Transition Register (NTR) (.ntr): When a bit is set in this read-write register, it 
enables a 1 to 0 change in the corresponding bit of the condition register to cause the 
corresponding bit in the event register to be set. 

• Positive Transition Register (PTR) (.ptr): When a bit is set in this read-write register, it 
enables a 0 to 1 change in the corresponding bit of the condition register to cause the 
corresponding bit in the event register to be set. 

 

Appendix C 

Status model 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-2 707B-901-01 Rev. B / January 2015 

 

An event is represented by a condition register bit changing from a 1 to 0 or 0 to 1. When an event 
occurs and the appropriate NTR or PTR bit is set, the corresponding event register bit is set to 1. The 
event bit remains latched to 1 until the event register is read or the status model is reset. When an 
event register bit is set and its corresponding enable bit is set, the summary bit of the register is set 
to 1. This, in turn, sets a bit in a higher-level condition register, potentially cascading to the associated 
summary bit of the Status Byte Register. 

 

Summary bit 

The summary bit of each register is either set (1) or clear (0). A set summary bit indicates that one (or 
more) of the enabled events in that register has occurred. 

 

Queues 

The Models 707B and 708B uses queues to store messages. The queues include: 

• Output queue: Holds response messages. 
• Error queue: Holds error and status messages. 

When a queue contains data, it sets the condition bit for that queue in one of the registers. The 
condition bits are: 

• Command queue: CAV in the Operation Status Remote Summary Register 
• Output queue: MAV in the Status Byte Register 
• Error queue: EAV in the Status Byte Register 

The CAV, MAV, and EAV bits in the registers are cleared when the queue is empty. Queues empty 
when: 

• Commands are executed 
• Errors are read from the error queue 
• Response messages are read from the instrument 

All Models 707B and 708B queues are first-in, first-out (FIFO). 
 

The Status Byte Register overview (on page C-4) shows how the queues are structured with the other 
registers. 

 

Output queue 

When the instrument is in the remote state, the output queue holds data that pertains to the normal 
operation of the instrument. For example, when a print() command is sent, the response message 
is placed in the output queue. 

When data is placed in the output queue, the Message Available (MAV) bit in the status byte register 
is set. A response message is cleared from the output queue when it is read. The output queue is 
considered cleared when it is empty. An empty output queue clears the MAV bit in the status byte 
register. 

A message is read from the output queue by addressing the instrument to talk. 
 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-3 

 

Status model diagrams 
The register sets (and queues) monitor various instrument events. When an enabled event occurs in 
one of the five registers, it sets the associated summary bit in the Status Byte register. When a 
summary bit of the Status Byte is set and its corresponding enable bit is set (as programmed using 
status.request_enable), the MSS bit will set to indicate that an SRQ has occurred. View the 
master summary bit using status.condition attribute. In an expanded system (TSP-link), setting 
the status.node_enable attribute allows the System registers to be shared by all nodes in the 
TSP-Link system. The following figures and topics illustrate the relationships of the individual 
registers and queues with the Status Byte register. 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-4 707B-901-01 Rev. B / January 2015 

 

Status Byte Register overview 
 

Figure 105: Status Byte register 

 
 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-5 

 

Measurement summary bit (Measurement event register) 
The summary bit of the measurement event register provides enabled summary information to Bit B0 
(MSB) of the status byte. Since the Models 707B and 708B has no internal measurement capabilities, 
none of the bits in the measurement registers are defined. Therefore, this bit is always 0. 

 

System summary bit (System register) 
The summary bit of the system register provides enabled summary information to Bit B1 (SSB) of the 
status byte. 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-6 707B-901-01 Rev. B / January 2015 

 

Figure 106: System summary bit (System register) 

 
 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-7 

 

As shown above, there are five register sets associated with System Event Status. These registers 
summarize system status for various nodes connected to the TSP-Link. Note that all nodes on the 
TSP-Link share a copy of the system summary registers once the TSP-Link has been initialized. This 
feature allows all nodes to access the status models of other nodes, including SRQ. 

In a TSP-Link system, the status model can be configured such that a status event in any node in the 
system can set the RQS (Request for Service) bit of the Master Node Status Byte. See TSP-Link 
system status (on page C-21) for details on using the status model in a TSP-Link system. 

Attributes are summarized in status.system.* (on page 7-190), status.system2.* (on page 7-192), 
status.system3.* (on page 7-194), status.system4.* (on page 7-196), and status.system5.* (on page 
7-198). 

For example, any of the following commands will set the EXT enable bit: 
status.system.enable = status.system.EXT 
status.system.enable = status.system.EXTENSION_BIT 
status.system.enable = 1 

When reading a register, a numeric value is returned. The binary equivalent of this value indicates 
which bits in the register are set. For details, see Reading registers (on page C-15). For example, the 
following command will read the system enable register: 

print(status.system.enable) 

The bits used in the system register sets are described as follows: 

• Bit B0, Extension Bit (EXT): Set bit indicates that an extension bit from another system status 
register is set. 

• Bits B1-B14* NODEN: Indicates a bit on TSP-Link node n has been set (N = 1 to 64). 
• Bits B15: Not used. 

*status.system5 does not use bits B9 through B15. 

Refer to the following table for available N values: 

 

Command N value 
status.system.* 1 to 14 

status.system2.* 15 to 28 

status.system3.* 29 to 42 
status.system4.* 43 to 56 
status.system5.* 57 to 64 

 

 
 

Error available bit (Error or Event queue) 
The summary bit of the Error or Event queue provides enabled summary information to Bit B2 (EAV) 
of the status byte. 

The Error Available Bit (EAV) is set when a message defining an error (or status) is placed in the 
Error or Event queue. The Error or Event queue is one of the two Switching Matrix queues associated 
with the status model. The other queue sets the Message available bit (Output queue)). Both queues 
are first-in, first-out (FIFO) queues. The Error queue holds error and status messages. The status 
model shows how these queues are structured with regard to the other registers. 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-8 707B-901-01 Rev. B / January 2015 

 

The following sequence outlines typical events associated with this queue: 

1. When an error or status event occurs, a message defining the error (or status) is placed in the 
Error queue. 

2. The Error Available (EAV) bit in the Status Byte Register is set. 
3. Through programming, the error (or status) message is read. This clears the error (or status) from 

the Error Queue. The Error queue is considered cleared when it is empty. 
4. An empty Error queue clears the EAV bit in the Status Byte Register. 

The commands to control the Error queue are listed below. When you read a single message in the 
Error queue, the oldest message is read and then removed from the queue. On power-up, the Error 
queue is initially empty. If there are problems detected during power-on, entries will be placed in the 
queue. If no problems are detected, the error number 0 and “No Error” will be returned. 

 

 

Error queue command Description 
errorqueue.clear() Clear error queue of all errors. 
errorqueue.count Number of messages in the error/event 

queue. 
errorqueue.next() Request error message. 

 

Messages in the Error queue include a code number, message text, severity, and TSP-Link node 
number. For example, the following commands request the next complete error information from the 
error queue and displays the code, message, severity and node of the next error: 
errorcode, message, severity, errornode = errorqueue.next() 
print(errorcode, message, severity, errornode) 

The error messages, as well as error numbers, are listed in the Error summary list. 
 

Questionable summary bit (Questionable event register) 
The summary bit of the questionable event register provides enabled summary information to Bit B3 
(QSB) of the status byte. 

Figure 107: Questionable summary bit (Questionable event register) 

 
 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-9 

 

As shown above, there is only one register set associated with the questionable status. Attributes are 
summarized in status.questionable.* (on page 7-181). Keep in mind that bits can also be set by using 
numeric parameter values. For details, see Programming enable and transition registers (on page C-
14). 

For example, any of the following statements will set the thermal aspect enable bit of a card in slot 1: 
status.questionable.enable = status.questionable.S1THR 
status.questionable.enable = status.questionable.SLOT1_THERMAL 
status.questionable.enable = 512 

The following command will request the questionable enable register value in numeric form: 
print(status.questionable.enable) 

The bits used in this register set are described as follows: 

• SxTHR: Set bit indicates the thermal aspect of the card in slot x is in question, where x = 1 to 6. 
 

Message available bit (Output queue) 
The summary bit of the output queue provides enabled summary information to Bit B4 (MAV) of the 
status byte. 

The Message Available Bit (MAV) is set when the Output queue holds data that pertains to the 
normal operation of the instrument. The Output queue is one of the two Switching Matrix queues 
associated with the status model. The other queue sets the Error Available Bit (Error or Event queue) 
(on page C-7). Both queues are first-in, first-out (FIFO) queues. The Status Byte Register overview 
(on page C-4) shows how these queues are structured with regard to the other registers. 

As an example, when a print command is sent, the response message is placed in the Output queue. 
When data is placed in the Output queue, the Message Available (MAV) bit in the Status Byte 
Register sets. A response message is cleared from the Output queue when it is read. The Output 
queue is considered cleared when it is empty. An empty Output queue clears the MAV bit in the 
Status Byte Register. 

A message is read from the Output queue by addressing the Switching Matrix to talk. 
 

Event summary bit (ESB register) 
The summary bit of the Standard event register provides enabled summary information to Bit B5 
(OSB) of the status byte. 

Figure 108: Event summary bit (Standard event register) 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-10 707B-901-01 Rev. B / January 2015 

 

As shown above, there is only one register set associated with the event status register. Attributes 
are summarized in status.standard.* (on page 7-187). Keep in mind that bits can also be set by using 
numeric parameter values. For details, see Programming enable and transition registers (on page C-
14). 

For example, any of the following statements will set the operation complete enable bit: 
standardRegister = status.standard.OPC 
status.questionable.enable = status.standard.OPERATION_COMPLETE 
status.questionable.enable = 1 

The bits used in this register set are described as follows: 

• Bit B0, Operation Complete (OPC): Set bit indicates that all pending selected device operations 
are completed and the instrument is ready to accept new commands. The bit is set in response to 
an *OPC command. The remote command opc() can be used in place of the *OPC command. 

• Bit B1: Not used. 
• Bit B2, Query Error (QYE): Set bit indicates that you attempted to read data from an empty 

Output queue. 
• Bit B3, Device-Dependent Error (DDE): Set bit indicates that an instrument operation did not 

execute properly due to some internal condition. 
• Bit B4, Execution Error (EXE): Set bit indicates that the instrument detected an error while 

trying to execute a command. 
• Bit B5, Command Error (CME): Set bit indicates that a command error has occurred. Command 

errors include: 
• IEEE-488.2 syntax error: The instrument received a message that does not follow the defined syntax of 

the IEEE-488.2 standard. 
• Semantic error: instrument received a command that was misspelled or received an optional IEEE-

488.2 command that is not implemented. 
• GET error: The instrument received a Group Execute Trigger (GET) inside a program message. 

• Bit B6, User Request (URQ): Set bit indicates that the LOCAL key on the instrument front panel 
was pressed. 

• Bit B7, Power ON (PON): Set bit indicates that the instrument has been turned off and turned 
back on since the last time this register has been read. 

 

Master summary status bit (MSS bit register) 
The master summary status bit provides summary information to Bit B6 (MSS) of the status byte. 
Although this bit is always enabled for the status byte, it has to be enabled (using 
status.node_enable) if needed in an expanded system (TSP-link). 

The Master Summary Status Bit (MSS) is set when an enabled summary bit of the Status Byte 
Register is set. This bit (B6) may also be interpreted as a Request Service (RQS) bit. Depending on 
how it is used, Bit B6 of the Status Byte Register is either the Request for Service (RQS) bit or the 
Master Summary Status (MSS) bit. 

When using the GPIB serial poll sequence of the Switching Matrix to obtain the status byte (serial poll 
byte), B6 is the RQS bit. See Serial polling and SRQ (on page C-18) for details on using the serial 
poll sequence. For common and script commands (Status Byte Register), B6 is the MSS (Message 
Summary Status) bit. The serial poll, although automatically resetting the RQS bit, does not clear 
MSS. The MSS remains set until all Status Byte summary bits are reset. 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-11 

 

Operation summary bit (Operation event register) 
The summary bit of the operation event register provides enabled summary information to Bit B7 
(OSB) of the status byte. 

Figure 109: Operation summary bit (Operation event register) 

 
 

The bits used in this register set are described as follows: 

• Bits B1-B10: Not used. 
• Bit B11, Remote Summary (REM): Set bit indicates that an enabled in the Operation Status 

Remote Summary Register is set. 
• Bit B12, User (USER): Set bit indicates that an enabled bit in the operation status user register is 

set. 
• Bit B13, Instrument Summary (INST): Set bit indicates that an enabled bit in the operation 

status instrument summary register is set. 
• Bit B14: Not used. 

 

Operation user bit (Operation user register) 

The summary bit of the operation user register provides the user bit (User) (Bit B12) to the operation 
status register. In turn, the summary bit of the operation status register will provide the operation 
summary bit (OSB) (Bit B7) to the status byte. 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-12 707B-901-01 Rev. B / January 2015 

 

Figure 110: Operation user summary bit (Operation user register) 

 

The bits used in this register set are described as follows: 

• Bits B0-B14: status.operation.user.BIT0 through status.operation.user.BIT14 

• Bits B15: Not used. 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-13 

 

 
 

Status function summary 
The following functions and attributes control and read the various registers. Additional information is 
included in the command listings for the various register sets. 

 

 

Status function summary 

Type Function or attribute* 

System summary status.condition (on page 7-172) 
 status.node_event (on page 7-176) 

 status.node_enable (on page 7-174) 

 status.request_event (on page 7-185) 

 status.request_enable (on page 7-183) 

 status.reset() (on page 7-187) 

Operation event status.operation.* (on page 7-177) 
 status.operation.user.* (on page 7-179) 

Questionable event status.questionable.* (on page 7-181) 
Standard event status.standard.* (on page 7-187) 
System events status.system.* (on page 7-190) 

 status.system2.* (on page 7-192) 

 status.system3.* (on page 7-194) 

 status.system4.* (on page 7-196) 

 status.system5.* (on page 7-198) 
 
 

Clearing registers 
Commands to reset the status registers are listed in the table below.  

In addition to these commands, you can reset the enable registers and the NTR to 0. To do this, send 
the individual command to program the register with a 0 as its parameter value. The PTR registers 
can be reset to their defaults by programming them with all bits on. Note that the event registers are 
not programmable but can be cleared by reading them. 

Commands to reset registers 

Command Description 
To reset registers:  
*CLS Reset bits of the event and NTR registers to 0 and 

set all PTR register bits on. Also clears the output 
queue. 

status.reset() Reset bits of the event and NTR registers to 0 and 
set all PTR register bits on. 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-14 707B-901-01 Rev. B / January 2015 

 

Startup state 
When the Switching Matrix is turned on, various register status elements are set as follows: 

• The power on (PON) bit in the status.operation.condition register is set. 

• Other bits are set appropriately based on the instrument's power-on configuration. 
• All enable registers (.enable) are set to 0. 
• All negative transition registers (.ntr) are set to 0. 
• All used positive transition registers (.ptr) bits are set to 1. 
• The two queues are empty. 

 

Programming and reading registers 
Programming enable and transition registers 
The only registers that you can program are the enable and transition registers. All other registers in 
the status structure are read-only registers. The following explains how to determine the parameter 
values for the various commands used to program enable registers. The actual commands are 
summarized in Status function summary (on page C-13). 

A command to program an event enable or transition register is sent with a parameter value that 
determines the desired state (0 or 1) of each bit in the appropriate register. The bit positions of the 
register (see the following figure) indicate the binary parameter value and decimal equivalent. To 
program one of the registers, send the decimal value for the bits to be set. The registers are 
discussed further in Enable and transition registers (on page C-20). 

Figure 111: 16-bit status register 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-15 

 

When using a numeric parameter, registers are programmed by including the appropriate <mask> 
value. For example: 
*ese 1169 
status.standard.enable = 1169 

To convert from decimal to binary, use the information shown in the above figure. For example, to set 
bits B0, B4, B7, and B10, a decimal value of 1169 would be used for the mask parameter (1169 = 1 + 
16 + 128 + 1024). 

 

Reading registers 
Any register in the status structure can be read either by sending the common command query 
(where applicable), or by including the script command for that register in either the print() or 
print(tostring()) command. The print() command outputs a numeric value; the 
print(tostring()) command outputs the string equivalent. For example, any of the following 
commands requests the Service Request Enable Register value: 
*SRE? 
print(tostring(status.request_enable)) 
print(status.request_enable) 

 

The response message will be a decimal value that indicates which bits in the register are set. That 
value can be converted to its binary equivalent using the information in Programming enable and 
transition registers (on page C-14). For example, for a decimal value of 37 (binary value of 100101), 
bits B5, B2, and B0 are set. 

 

Register programming example 
The command sequence below programs the instrument to generate a service request (SRQ) and set 
the system summary bit in all TSP-Link nodes when the current limit on channel A is exceeded. 
-- Clear all registers. 
status.reset() 
 
-- Enable SLOT1_THERMAL bit in questionable register. 
status.questionable.enable = status.questionable.SLOT1_THERMAL 
 
-- Set the system summary node QSB enable bit. 
status.node_enable = status.QSB 
 
-- Set the QSB bit of the service request enable register. 
status.request_enable = status.QSB 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-16 707B-901-01 Rev. B / January 2015 

 

Status byte and service request (SRQ) 
Service requests (SRQs) allow an instrument to indicate that it needs attention or that some event 
has occurred. When the controller receives an SRQ, it allows the controller to interrupt tasks to 
perform other tasks in order to address the request for service. 

For example, you might program your instrument to send an SRQ when: 

• All instrument operations are complete 
• An instrument error occurs 
• A specific operation has occurred 

Two 8-bit registers control service requests, the Status Byte Register and the Service Request 
Enable Register. The Status Byte Register (on page C-16) topic describes the structure of these 
registers. 

Service requests affect GPIB, USB, and VXI-11 connections. On a GPIB connection, the SRQ line is 
asserted. On a VXI-11 or USB connection, an SRQ event is generated. 

 

Service Request Enable Register 
The Service Request Enable Register controls the generation of a service request. This register is 
programmed by the user and is used to enable or disable the setting of bit B6 (RQS/MSS) by the 
Status Summary Message bits (B0, B1, B2, B3, B4, B5, and B7) of the Status Byte Register. As 
shown in the Status Byte Register (on page C-16) topic, a logical AND operation is performed on the 
summary bits (&) with the corresponding enable bits of the Service Request Enable Register. When a 
logical AND operation is performed with a set summary bit (1) and with an enabled bit (1) of the 
enable register, the logic “1” output is applied to the input of the logical OR gate and, therefore, sets 
the MSS/RQS bit in the Status Byte Register. 

The individual bits of the Service Request Enable Register can be set or cleared by using the *SRE 
common command or status.request_enable. To read the Service Request Enable Register, 
use the *SRE? query or print(status.request_enable). The Service Request Enable Register 
clears when power is cycled or a parameter value of 0 is sent with a status request enable command 
(for example, a *SRE 0 or status.request_enable = 0 is sent). The commands to program and 
read the SRQ Enable Register are listed in Status byte and service request commands (on page C-
20). 

 

Status Byte Register 
The summary messages from the status registers and queues are used to set or clear the appropriate 
bits (B0, B1, B2, B3, B4, B5, and B7) of the Status Byte Register. These summary bits do not latch, 
and their states (0 or 1) are dependent upon the summary messages (0 or 1). For example, if the 
Standard Event Register is read, its register will clear. As a result, its summary message will reset to 
0, which will then reset the ESB bit in the Status Byte Register. 

The Status Byte Register also receives summary bits from itself, which sets the Master Summary 
Status, or MSS, bit. 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-17 

 

Figure 112: Status byte and service request (SRQ) 

 
 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-18 707B-901-01 Rev. B / January 2015 

 

The bits of the Status Byte Register are described as follows: 

• Bit B0, Measurement Summary Bit (MSB): Set summary bit indicates that an enabled 
measurement event has occurred. 

• Bit B1, System Summary Bit (SSB): Set summary bit indicates that an enabled system event 
has occurred. 

• Bit B2, Error Available (EAV): Set bit indicates that an error or status message is present in the 
error queue. 

• Bit B3, Questionable Summary Bit (QSB): Set summary bit indicates that an enabled 
questionable event has occurred. 

• Bit B4, Message Available (MAV): Set bit indicates that a response message is present in the 
output queue. 

• Bit B5, Event Summary Bit (ESB): Set summary bit indicates that an enabled standard event 
has occurred. 

• Bit B6, Request Service (RQS)/Master Summary Status (MSS): Set bit indicates that an 
enabled summary bit of the Status Byte Register is set. Depending on how it is used, bit B6 of the 
Status Byte Register is either the Request for Service (RQS) bit or the Master Summary Status 
(MSS) bit: 
• When using the GPIB, USB, or VXI-11 serial poll sequence of the Models 707B and 708B to obtain the 

status byte (serial poll byte), B6 is the RQS bit. See Serial polling and SRQ (on page C-18) for details 
on using the serial poll sequence. 

• When using the *STB? common command or status.condition Status byte and service request 
commands (on page C-20) to read the status byte, B6 is the MSS bit. 

• Bit B7, Operation Summary (OSB): Set summary bit indicates that an enabled operation event 
has occurred. 

 

Serial polling and SRQ 
Any enabled event summary bit that goes from 0 to 1 sets bit B6 and generates a service request 
(SRQ). 

In your test program, you can periodically read the Status Byte to check if an SRQ has occurred and 
what caused it. If an SRQ occurs, the program can, for example, branch to an appropriate subroutine 
that will service the request. 

SRQs can be managed by the serial poll sequence of the instrument. If an SRQ does not occur, bit 
B6 (RQS) of the Status Byte Register remains cleared, and the program  proceeds normally after the 
serial poll is performed. If an SRQ does occur, bit B6 of the Status Byte Register is set, and the 
program can branch to a service subroutine when the SRQ is detected by the serial poll. 

The serial poll automatically resets RQS of the Status Byte Register. This allows subsequent serial 
polls to monitor bit B6 for an SRQ occurrence that is generated by other event types. 

For common commands and TSP commands, B6 is the MSS (Message Summary Status) bit. The 
serial poll does not clear the MSS bit. The MSS bit remains set until all enabled Status Byte Register 
summary bits are reset. 

 

SPE, SPD (serial polling) 
For the GPIB interface only, the SPE and SPD general bus commands are used to serial poll the 
Switching Matrix. Serial polling obtains the serial poll byte (status byte). Typically, serial polling is 
used by the controller to determine which of several instruments has requested service with the SRQ 
line. 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-19 

 

Service requests 
Service requests (SRQs) affect both the GPIB and the VXI-11 connections. On a GPIB connection, 
the SRQ line is asserted. On a VXI-11 connection, an SRQ event is generated. 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-20 707B-901-01 Rev. B / January 2015 

 

 
 

Status byte and service request commands 
The commands to program and read the Status Byte Register and Service Request Enable Register 
are listed in Status byte and service request commands (on page C-20). Note that the table includes 
both common commands and their script command equivalents. For details on programming and 
reading registers, see Programming enable and transition registers (on page C-14) and Reading 
registers (on page C-15). 

To reset the bits of the Service Request Enable Register to 0, use 0 as the parameter value for the 
command (for example, *SRE 0 or status.request_enable = 0). 

 

Status Byte and Service Request Enable Register commands 

Command Description  
*STB? 
or 
print(status.condition) 

Read the Status Byte Register. 

*SRE <mask> 
or 
status.request_enable = <mask> 

Program the Service Request Enable Register where 
<mask> = 0 to 255. 

*SRE? 
or 
print(status.request_enable) 

Read the Service Request Enable Register. 

 
 

Enable and transition registers 
In general, there are three types of user-writable registers that are used to configure which bits feed 
the register summary bit and when it occurs. The registers are identified in each applicable command 
(as listed in TSP commands) as follows: 

• Enable register (identified as .enable in each attribute's command listing): Allows various 
associated events to be included in the summary bit for the register. 

• Negative-transition register (identified as .ntr in each attributes command listing): A particular 
bit in the event register will be set when the corresponding bit in the NTR is set, and the 
corresponding bit in the condition register transitions from 1 to 0. 

 

• Positive-transition register (identified as .ptr in each attributes command listing): A particular 
bit in the event register will be set when the corresponding bit in the PTR is set, and the 
corresponding bit in the condition register transitions from 0 to 1. 

 

Controlling node and SRQ enable registers 
Attributes to control system node and service request (SRQ) enable bits and read associated 
registers are summarized in the Status byte register overview (on page C-4). For example, either of 
the following will set the system node QSB enable bit: 
status.node_enable = status.QSB 
status.node_enable = 8 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-21 

 

TSP-Link system status 
The TSP-Link® expansion interface allows instruments to communicate with each other. The test 
system can be expanded to include up to 32 TSP-enabled instruments. In a TSP-Link system, one 
node (instrument) is the master and the other nodes are the subordinates. The master can control the 
other nodes (subordinates) in the system. See TSP-Link system expansion interface for details about 
the TSP-Link system. 

The system summary registers, shown in the System summary bit (System register) (on page C-5), 
are shared by all nodes in the TSP-Link system. A status event that occurs at a subordinate node can 
generate an SRQ (service request) in the master node. After detecting the service request, your 
program can then branch to an appropriate subroutine that will service the request. See Status byte 
and service request (SRQ) (on page C-16) for details. 

 

Status model configuration example 
The following example illustrates the status model configuration for a TSP-Link system. In this 
example, a Node 15 thermal aspect event will set the RQS bit of the Status Byte of the master Node.  

 

When the thermal aspect event occurs on Node 15, the following sequence of events will occur: 

1. On Node 15, with Bit B9 of the Questionable event register enabled, when the thermal aspect 
event occurs, Bit B9 bit sets (status.questionable.condition) which causes Bit B9 to be 
set in status.questionable.event. This in turn causes the Questionable event summary bit 
(QSB) to set. 

2. With QSB set, and Bit B3 of the System node enabled (status.node_enable), Bit B3 of  the 
Status Byte register (Node 15) sets. This in turn causes the System node summary bit to set. 

3. With the System node summary bit set, and Bit B1 of the System2 summary event register 
enabled (which is Node 15), Bit B1 of the System2 register sets. This in turn causes the System2 
event summary bit (EXT) to set. 

4. With EXT set, and Bit B0 of the System summary event register enabled, Bit B0 of the System 
register sets. This in turn causes the System event summary bit (SSB) to set. 

5. With SSB set, and Bit B1 of the Service request enable register enabled, Bit B6 of the Status Byte 
register sets. This in turn initiates a request for service (SRQ).  

6. When your program performs the next serial poll of the Master Node, it will detect the interlock 
event and can branch to a routine to service the request. 

 

The System Summary Registers are shared by all nodes in the TSP-Link system. When a bit in a 
system register of Node 15 sets, the same bit in the master node system register also sets. 

 



Appendix C: Status model Models 707B and 708B Switching Matrix Reference Manual 
 

C-22 707B-901-01 Rev. B / January 2015 

 

The following commands (sent from the master node) enable the appropriate register bits for the 
above example: 

Node 15 status registers: The following commands enable the events for Node 15: 
node[15].status.questionable.enable = status.questionable.S1THR 
node[15].status.node_enable = status.QSB 

The affected status registers for the above commands are indicated by labels (1) and (2) (see the 
"TSP-Link status model configuration example" figure below). 

System registers: The following commands enable the required system summary bits for Node 15: 
status.system2.enable = status.system2.NODE15 
status.system.enable = status.system.EXT 

The affected system registers for the above commands are indicated by labels (3) and (4) (see the 
"TSP-Link status model configuration example" figure below). 

 

Master Node service request: The following command enables the service request for the 
measurement event: 
status.request_enable = status.SSB 

The affected status register for the above command is indicated by labels (5) and (6) (see the "TSP-
Link status model configuration example" figure below). 

 



Models 707B and 708B Switching Matrix Reference Manual Appendix C: Status model 
 

707B-901-01 Rev. B / January 2015 C-23 

 

TSP- Link status model configuration exampl e 

Figure 113: TSP-Link status model configuration example 

 
 

 





  

 

: 
:SYSTem 

POSetup 
rack mounting • A-4 

< 
<ch_list> queries • 2-82 

A 
acceptor trigger mode • 3-15, 3-19 
anonymous script • 6-5 
arrays • 6-24 
attribute • 5-2 

assigning a value to • 5-2 
reading • 5-2 

autoexec script • 6-7 
autorun scripts • 6-6 

B 
background scan execution • 3-7 
base library functions • 6-25 
basic scan procedure • 3-5 
beeper • 5-3, 7-8 
bit • 5-4 
bit functions • 7-9, 7-10, 7-11, 7-12, 7-13, 7-14, 7-15, 

7-64 
Break-Before-Make • 2-82 
bus operation 

scanning • 3-8 

C 
channel 

break before make • 5-27, 7-18 
close/open operations and commands • 7-17, 7-

18 
connect rule • 2-82 
designations • 2-80 
existing scan • 3-6 
forbidden to close • 7-16, 7-42 
list parameter • 2-81 
make before break • 5-27, 7-18 
patterns • 2-92 

channel commands 
channel.clearforbidden() • 7-16 
channel.close() • 7-17 
channel.connectrule • 7-18 

channel.connectsequential • 7-19 
channel.createspecifier() • 7-20 
channel.exclusiveclose() • 7-22 
channel.exclusiveslotclose() • 7-23 
channel.getclose() • 7-24 
channel.getcount() • 7-25 
channel.getdelay() • 7-26 
channel.getforbidden() • 7-27 
channel.getlabel() • 7-28 
channel.getlabelcolumn() • 7-30 
channel.getlabelrow() • 7-31 
channel.getstate() • 7-32 
channel.gettype() • 7-33 
channel.open() • 7-33 
channel.pattern.catalog() • 7-35 
channel.pattern.delete() • 7-36 
channel.pattern.getimage() • 7-36 
channel.pattern.setimage() • 7-37 
channel.pattern.snapshot() • 7-39 
channel.reset() • 7-40 
channel.setdelay() • 7-41 
channel.setforbidden() • 7-42 
channel.setlabel() • 7-43 
channel.setlabelcolumn() • 7-44 
channel.setlabelrow() • 7-46 

channel patterns • 2-92 
clear • 7-63, 7-228 
close 

close channel operations • 7-17, 7-22, 7-23, 7-24, 
7-33 

command • 5-1 
device control • 6-54 
ICL commands • 3-8 
programming notes • 7-1 
queries • 5-3 
reference • 7-1 

conditional branching • 6-18 
configuration 

CONFIG key • 2-16 
createconfigscript() • 7-47 
script •  See createconfigscript() 

connecting multiple instruments 
run simultaneous scripts • 6-48 
TSP-Link • 6-44, 6-48 

connection 
connect rule (channel) • 7-18 
methods • 2-82 

Index 



Index Models 707B and 708B Switching Matrix Reference Manual 
 

2 707B-901-01 Rev. B / January 2015 

 

contact information • 1-1 
counts • 3-4 
createconfigscript() • 7-47 
crosspoint • 2-14 

display (crosspoint) • 2-15 
cursor • 7-65 

D 
data queue • 6-51 
dataqueue functions and attributes • 5-7 
digital I/O 

port • 2-7 
reading lines (digital I/O) • 2-8 

digital I/O port 
+5V output • 2-8 
bit weighting • 2-9 

display 
DISPLAY key • 2-16 
Model 707B front panel • 2-11 
Model 708B front panel • 2-11 

DMM 
attributes, existing scan • 3-6 

dry-clamp open lead detector 
event log • 5-9 

E 
either edge trigger mode • 3-16 
error messages 

retrieving • 8-2 
errors 

effects on scripts • 8-2 
summary • 8-1 

ethernet connector (RJ-45) • 2-4 
event blenders • 3-21 
examples 

script • 6-53 
using attributes • 5-2 

extended warranty • 1-1 

F 
falling edge trigger mode • 3-14 
foreground scan execution • 3-7 
front panel 

display • 2-14, 2-16, 2-18 
keys • 2-16 
Model 707B front panel • 2-11 
Model 708B front panel • 2-11 
scanning • 3-6 

functions • 5-1 
Lua • 6-14 

G 
gpib attribute 

gpib.address • 7-92 

groups, TSP-Link 
assigning • 6-49 
coordinating overlapped operations • 6-50 
leader • 6-49 
manage nodes • 6-48 

H 
hot switching • 7-18 

K 
Keithley I/O layer • 2-59 
Keithley website • 10-1 
keys • 2-16 

L 
LAN 

events • 3-21 
MAC address • 7-104 
status light • 2-18 

libraries, standard • 6-25 
local group • 7-135 
logical 

logical AND operation • 7-9 
logical OR operation • 7-9 

loop control • 6-20 
Lua • 6-11 

reference • 6-11 

M 
MAC address • 7-104 
make-before-break • 2-82 
manuals • 10-1 
master 

node reset • 7-135 
node, TSP-Link • 6-49 
trigger mode • 3-15, 3-17 

math 
library functions • 6-28 

matrix card notation • 2-81 
memory functions 

memory.available() • 7-129 
memory.used() • 7-130 

modules 
identify installed • 2-85 

multiple instruments, connecting 
run simultaneous scripts • 6-48 
TSP-Link • 6-44, 6-48 

N 
named scripts 

overview • 6-4 
running • 6-5, 6-6 

navigation wheel • 2-16 
node 



Models 707B and 708B Switching Matrix Reference Manual Index 
 

707B-901-01 Rev. B / January 2015 3 

 

assign number • 6-46 
master overview • 6-49 

nonvolatile memory 
storage of scripts • 6-2 

O 
operator precedence • 6-18 
operators (Lua) • 6-16 
overlapped operations • 6-50 
overlapped operations in remote groups, 

coordinating • 6-50 

P 
parallel test scripts • 6-49 
power 

blinking • 7-65 
POWER switch • 2-16 
programming • 5-3,  See command 

interaction • 6-33 
script model • 6-3 

pseudocards • 2-98 

Q 
queries • 5-3 
queues • C-2 

error • C-2 
event • C-2 
output • C-2 

R 
reading buffer 

removing stale values • 6-52 
registers 

enable and transition • C-20 
programming example • C-15 
reading • C-15 
serial polling and SRQ • C-18 
service request enable (registers) • C-16 

relay closure count • 2-85 
remote programming 

command reference • 7-1 
remote commands • 5-1 

reset 
digio trigger • 7-58 
lan • 7-101 
localnode • 7-124 
reset • 7-135 
scan • 7-146 
status • 7-187 
timer • 7-200 

rising edge 
acceptor trigger mode • 3-15 
master trigger mode • 3-15 
trigger mode • 3-15 

RJ-45 
Ethernet connector • 2-4 

run-time environment 
script, restoring • 6-42 
storage of scripts • 6-2 

S 
scanning 

counts • 3-4 
execution, foreground and background • 3-7 
fundamentals • 3-1 

script editor • 6-33 
scripts • 5-3, 6-2 

autoexec • 6-7 
autorun scripts • 6-6 
deleting • 6-41 
error effects • 8-2 
examples • 6-53 
function, using • 6-16 
interactive • 6-3 
name attribute • 7-162 
named • 6-4, 6-6 
parallel test, running • 6-49 
restoring in run-time environment • 6-42 
run • 6-5, 6-6, 6-49 
script editor • 6-33 
test scripts across the TSP-Link network • 6-51 
unnamed • 6-5 
user • 6-3, 6-5, 6-39 

scripts, error effects • 8-2 
serial polling • C-18 
slot 

slot list description • 2-14 
SRQ (service request) • C-16 
state • 6-52 
status 

LAN status indicator • 2-18 
status byte and service request (SRQ) • C-16 

commands • C-20 
status model • C-1 

clearing registers and queues • C-13 
programming registers and queues • C-13 
queues • C-2 
reading registers • C-15 
status byte and SRQ • C-1, C-16 
status register sets • C-1 
TSP-Link system • C-21 

status register sets • C-1 
step counts • 3-4 
string library functions • 6-26 
substring • 6-26 
synchronous 

acceptor trigger mode • 3-19 
master trigger mode • 3-17 
trigger mode • 3-19 



Index Models 707B and 708B Switching Matrix Reference Manual 
 

4 707B-901-01 Rev. B / January 2015 

 

triggering modes, understanding • 3-17 

T 
Test Script Builder • 6-31 
time • 7-165, 7-166 
trigger mode • 3-15, 3-19 

access trigger mode • 3-15, 3-19 
either edge • 3-16 
falling edge • 3-14 
rising edge acceptor • 3-15 
rising edge master • 3-15 
synchronous • 3-19 
synchronous acceptor • 3-19 
synchronous master • 3-17 
syntax rules • 7-2 

Trigger model 
components • 3-3 
Described • 3-1 

troubleshooting 
web page • 2-66 

TSB Embedded 
installing software • 6-32 

TSP • 5-1 
programming methods • 6-1 

TSP-Link • 6-44, 6-48 
advanced features • 6-44 
communicating between TSP-enabled 

instruments • 6-54 
groups • 6-48, 6-49, 6-50 
initialization • 6-46 
node numbers • 6-46 
nodes • 6-48 
reset • 6-46 

U 
unnamed scripts • 6-5 
USB 

setup, USB • 2-23 
user scripts 

creating • 6-3 
modifying • 6-39 
running • 6-5 
save • 6-7 

userstring functions • 6-48 
add • 7-239 
catalog • 7-240 
delete • 7-241 
get • 7-242 

UTC • 7-165 

V 
variables • 6-12 

W 
warranty • 1-1 
web interface 

Home page • 2-66 

 



Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments.

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments
Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-800-935-5595 • www.keithley.com

8/14

A Greater Measure of  Conf idence


	1 Introduction
	Contact information
	Overview
	Extended warranty

	2 General operation
	Rear panel overview
	Model 707B Rear panel
	Model 708B Rear panel

	Wiring
	Communication connections
	Digital I/O port

	Power-up
	Line power connection
	Power-up sequence

	Front-panel operation
	Model 707B front panel
	Model 708B front panel
	Display
	Crosspoint display (Model 707B only)
	Selecting channels from the front panel
	Keys and navigation wheel
	Menu options

	Remote communications interfaces
	USB communications
	GPIB setup
	LAN communications
	Supplied software
	Keithley I/O layer
	Addressing instruments with VISA

	Using the web interface
	Introduction
	Card pages
	Scan Builder page
	TSB Embedded
	Admin page
	Unit page
	LXI page

	Switch operation
	Working with channels
	Reset a channel
	Pseudocards
	Save the present configuration


	3 Functions and features
	Scanning and triggering
	Trigger model
	Trigger model components
	Trigger model events and associated commands

	Scan and step counts
	Basic scan procedure
	Changing attributes of an existing scan
	Front-panel scanning
	Foreground and background scan execution
	Include multiple channels in a single scan step

	Remote interface scanning
	Scan and trigger commands
	Scanning examples

	Hardware trigger modes
	Falling edge trigger mode
	Rising edge master trigger mode
	Rising edge acceptor trigger mode
	Either edge trigger mode

	Understanding synchronous triggering modes
	Synchronous master trigger mode
	Synchronous acceptor trigger mode
	Synchronous trigger mode

	Events
	Event blenders


	4 Theory of operation
	Theory of operation
	Models 707B and 708B theory of operations overview
	Mainframe
	Front panel


	5 Introduction to TSP operation
	Introduction to TSP operation
	Controlling the instrument by sending individual command messages
	Queries
	Data retrieval commands
	Information on scripting and programming

	About TSP commands
	Beeper control
	Bit manipulation and logic operations
	channel functions and attributes
	createconfigscript function
	Data queue
	delay function
	Digital I/O
	Display
	Error queue
	eventlog functions and attributes
	exit function
	Queries and response messages
	GPIB
	LAN and LXI
	Local node
	make accessor functions
	memory functions
	opc function
	print functions
	Reset
	Scan
	Scripting
	Slot
	Status model functions
	timer functions
	trigger functions and attributes
	TSP-Link
	TSP-Net
	Userstrings
	waitcomplete function

	Overview of instrument drivers
	Instrument driver types
	VXIPnP drivers
	Interchangeable Virtual Instruments (IVI) style drivers
	LabVIEW drivers
	Getting instrument drivers
	Instrument driver examples

	Migrating from Models 707A and 708A
	Migrating Model 707A or 708A programs to Model 707B or 708B
	DDC to ICL command equivalencies


	6 Instrument programming
	Fundamentals of scripting for TSP
	Fundamentals of scripting for TSP

	Fundamentals of programming for TSP
	Introduction
	What is Lua?
	Lua basics
	Standard libraries
	Programming example: Script with a for loop

	Using Test Script Builder (TSB)
	Installing the TSB software
	Project navigator
	Script editor
	Programming interaction

	Advanced scripting for TSP
	Global variables and the script.user.scripts table
	Create a script using the script.new() command
	Rename a script
	Retrieve a user script
	Delete user scripts from the instrument
	Restore a script to the run-time environment
	Memory considerations for the run-time environment

	TSP-Link system and running simultaneous test scripts
	TSP-Link system
	TSP-Link nodes
	Connect the TSP-Link cable
	Initialization
	Using TSP to run test scripts simultaneously

	TSP-Net
	Overview
	TSP-Net Capabilities
	Using TSP-Net with any Ethernet-enabled device
	TSP-Net compared to TSP-Link to communicate with TSP-enabled devices
	TSP-Net instrument commands: General device control
	TSP-Net instrument commands: TSP-enabled device control
	Example: Using tspnet commands


	7 TSP command reference
	Command programming notes
	Placeholder text
	Syntax rules
	Logical instruments
	Time and date values

	Using the TSP command reference
	Command name and standard parameters summary
	Command usage
	Command details
	Example section
	Related commands and information

	Instrument Control Library (ICL) command reference

	8 Troubleshooting guide
	Troubleshooting guide
	Error and status messages
	Error summary
	Effects of errors on scripts
	Retrieving errors

	USB troubleshooting
	Check driver for the USB Test and Measurement Device

	Troubleshooting GPIB interfaces
	Controller (hardware) not recognized
	Timeout errors

	Troubleshooting LAN interfaces
	Verify connections and settings
	Use Ping to test the connection
	Open ports on firewalls
	Web page problems
	LXI LAN status indicator
	Initialize the LAN configuration
	Install LXI Discovery Browser software on your computer
	Communicate using VISA communicator
	WireShark

	Testing the display, keys, and channel matrix
	Verify front panel key operation
	Verify display operation
	Verify crosspoint display operation (707B only)

	Update drivers
	Contacting support

	9 Frequently asked questions
	Frequently asked questions
	How do I get my LAN or web connection to work?
	Why can't I close a channel?
	How do I know if an error has occurred on my instrument?
	How do I find the serial number and firmware version of the instrument?


	10 Next steps
	Additional Models 707B and 708B information
	Maintenance
	Upgrading firmware
	Check fan status
	Fuse replacement
	Fixed rack installation

	Using Models 707A and 708A compatibility mode
	Model A to Model B differences
	Models 707A and 708A commands

	Status model
	Overview
	Status model diagrams
	Status function summary
	Clearing registers
	Startup state
	Programming and reading registers
	Status byte and service request (SRQ)
	TSP-Link system status


	11 Index


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /All

  /Binding /Left

  /CalGrayProfile (Gray Gamma 2.2)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Warning

  /CompatibilityLevel 1.7

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /sRGB

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType true

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo false

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Remove

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

    /Arial-Black

    /Arial-BlackItalic

    /Arial-BoldItalicMT

    /Arial-BoldMT

    /Arial-ItalicMT

    /ArialMT

    /ArialNarrow

    /ArialNarrow-Bold

    /ArialNarrow-BoldItalic

    /ArialNarrow-Italic

    /ArialUnicodeMS

    /CenturyGothic

    /CenturyGothic-Bold

    /CenturyGothic-BoldItalic

    /CenturyGothic-Italic

    /CourierNewPS-BoldItalicMT

    /CourierNewPS-BoldMT

    /CourierNewPS-ItalicMT

    /CourierNewPSMT

    /Georgia

    /Georgia-Bold

    /Georgia-BoldItalic

    /Georgia-Italic

    /Impact

    /LucidaConsole

    /Tahoma

    /Tahoma-Bold

    /TimesNewRomanMT-ExtraBold

    /TimesNewRomanPS-BoldItalicMT

    /TimesNewRomanPS-BoldMT

    /TimesNewRomanPS-ItalicMT

    /TimesNewRomanPSMT

    /Trebuchet-BoldItalic

    /TrebuchetMS

    /TrebuchetMS-Bold

    /TrebuchetMS-Italic

    /Verdana

    /Verdana-Bold

    /Verdana-BoldItalic

    /Verdana-Italic

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 150

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages false

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 150

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 150

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages false

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 150

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages false

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects true

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

    /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)

    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>

    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

    /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

>> setdistillerparams

<<

  /HWResolution [600 600]

  /PageSize [612.000 792.000]

>> setpagedevice





